35 lines
1.5 KiB
Python
35 lines
1.5 KiB
Python
|
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
||
|
from transformers.models.auto.modeling_auto import AutoModelForCausalLM
|
||
|
import torch
|
||
|
|
||
|
tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-medium')
|
||
|
model = AutoModelForCausalLM.from_pretrained('microsoft/DialoGPT-medium')
|
||
|
#model = AutoModelForCausalLM.from_pretrained('../output-medium')
|
||
|
|
||
|
# chatting 5 times with nucleus & top-k sampling & tweaking temperature & multiple
|
||
|
# sentences
|
||
|
for step in range(5):
|
||
|
# take user input
|
||
|
text = input(">> You: ")
|
||
|
# encode the input and add end of string token
|
||
|
input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt")
|
||
|
# concatenate new user input with chat history (if there is)
|
||
|
bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids
|
||
|
# generate a bot response
|
||
|
chat_history_ids_list = model.generate(
|
||
|
bot_input_ids,
|
||
|
max_length=1000,
|
||
|
do_sample=True,
|
||
|
top_p=0.95,
|
||
|
top_k=50,
|
||
|
temperature=0.75,
|
||
|
num_return_sequences=5,
|
||
|
pad_token_id=tokenizer.eos_token_id
|
||
|
)
|
||
|
#print the outputs
|
||
|
for i in range(len(chat_history_ids_list)):
|
||
|
output = tokenizer.decode(chat_history_ids_list[i][bot_input_ids.shape[-1]:], skip_special_tokens=True)
|
||
|
print(f"Cartman {i}: {output}")
|
||
|
choice_index = int(input("Choose the response you want for the next input: "))
|
||
|
chat_history_ids = torch.unsqueeze(chat_history_ids_list[choice_index], dim=0)
|