This commit is contained in:
Adam 2023-02-08 10:22:57 -05:00
parent 6663e8a366
commit d2c8d5dca2
16 changed files with 219159 additions and 0 deletions

82
api/main.py Executable file
View file

@ -0,0 +1,82 @@
from fastapi import FastAPI, Request
from pydantic import BaseModel
from fastapi.middleware.cors import CORSMiddleware
from transformers.models.auto.tokenization_auto import AutoTokenizer
from transformers.models.auto.modeling_auto import AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained(
"microsoft/DialoGPT-large", padding_side='left')
model = AutoModelForCausalLM.from_pretrained(
"../train/cartman/models/output-medium")
class Packet(BaseModel):
message: str
max_new_tokens: int
num_beams: int
num_beam_groups: int
no_repeat_ngram_size: int
length_penalty: float
diversity_penalty: float
repetition_penalty: float
early_stopping: bool
def cartman_respond(packet: Packet) -> str:
input_ids = tokenizer(packet.message +
tokenizer.eos_token, return_tensors="pt").input_ids
outputs = model.generate(
input_ids,
pad_token_id=tokenizer.eos_token_id,
max_new_tokens=packet.max_new_tokens,
num_beams=packet.num_beams,
num_beam_groups=packet.num_beam_groups,
no_repeat_ngram_size=packet.no_repeat_ngram_size,
length_penalty=packet.length_penalty,
diversity_penalty=packet.diversity_penalty,
repetition_penalty=packet.repetition_penalty,
early_stopping=packet.early_stopping,
# do_sample = True,
# top_k = 100,
# top_p = 0.7,
# temperature = 0.8,
)
return tokenizer.decode(outputs[:, input_ids.shape[-1]:][0],
skip_special_tokens=True)
api = FastAPI()
api.add_middleware(
CORSMiddleware,
allow_origins=['*'],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@api.post('/chat/')
async def getInformation(request: Request) -> dict[str, str]:
data = await request.json()
packet = Packet(
message=data.get('message'),
max_new_tokens=data.get('max_new_tokens'),
num_beams=data.get('num_beams'),
num_beam_groups=data.get('num_beam_groups'),
no_repeat_ngram_size=data.get('no_repeat_ngram_size'),
length_penalty=data.get('length_penalty'),
diversity_penalty=data.get('diversity_penalty'),
repetition_penalty=data.get('repetition_penalty'),
early_stopping=data.get('early_stopping'),
)
print(packet.message)
response = cartman_respond(packet)
print(response)
return {"Cartman": response}

31
api/requirements.txt Normal file
View file

@ -0,0 +1,31 @@
anyio==3.6.2
certifi==2022.12.7
charset-normalizer==3.0.1
click==8.1.3
fastapi==0.89.1
filelock==3.9.0
h11==0.14.0
huggingface-hub==0.12.0
idna==3.4
numpy==1.24.2
nvidia-cublas-cu11==11.10.3.66
nvidia-cuda-nvrtc-cu11==11.7.99
nvidia-cuda-runtime-cu11==11.7.99
nvidia-cudnn-cu11==8.5.0.96
packaging==23.0
Pillow==9.4.0
pydantic==1.10.4
PyYAML==6.0
regex==2022.10.31
requests==2.28.2
sniffio==1.3.0
starlette==0.22.0
tokenizers==0.13.2
torch==1.13.1
torchaudio==0.13.1
torchvision==0.14.1
tqdm==4.64.1
transformers==4.26.0
typing_extensions==4.4.0
urllib3==1.26.14
uvicorn==0.20.0

3
api/run Executable file
View file

@ -0,0 +1,3 @@
#!/bin/bash
uvicorn main:api --host 10.0.1.1 --reload

24
api/test/test.py Normal file
View file

@ -0,0 +1,24 @@
import requests
import json
while True:
user_input: str = input('>> ')
if user_input in 'qx':
break
else:
packet = {
'message': user_input,
'max_new_tokens': 20,
'num_beams': 2,
'num_beam_groups': 2,
'no_repeat_ngram_size': 3,
'length_penalty': 1.4,
'diversity_penalty': 0.1,
'repetition_penalty': 2.1,
'early_stopping': True,
}
response = requests.post(
'http://127.0.0.1:8000/chat/', json=packet)
print(response.json())

3
train/.gitignore vendored Normal file
View file

@ -0,0 +1,3 @@
__pycache__/
.ipynb_checkpoints/
cartman/

939
train/clean.ipynb Normal file
View file

@ -0,0 +1,939 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "23a7a47d-40c9-4ce2-8e1d-069690edfed3",
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-18T01:39:49.045197Z",
"iopub.status.busy": "2022-10-18T01:39:49.044788Z",
"iopub.status.idle": "2022-10-18T01:39:49.325032Z",
"shell.execute_reply": "2022-10-18T01:39:49.324364Z",
"shell.execute_reply.started": "2022-10-18T01:39:49.045112Z"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(70896, 4)\n"
]
}
],
"source": [
"import pandas as pd\n",
"df = pd.read_csv('data/All-seasons.csv')\n",
"print(df.shape)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "cd058417-a7b1-408f-a6b8-d02c114b380d",
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-18T01:39:49.326910Z",
"iopub.status.busy": "2022-10-18T01:39:49.326699Z",
"iopub.status.idle": "2022-10-18T01:39:49.339491Z",
"shell.execute_reply": "2022-10-18T01:39:49.338704Z",
"shell.execute_reply.started": "2022-10-18T01:39:49.326893Z"
},
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"2 6416\n",
"3 5798\n",
"4 5680\n",
"6 5131\n",
"5 4414\n",
"7 4236\n",
"1 4170\n",
"8 3601\n",
"9 3526\n",
"11 3478\n",
"10 3471\n",
"14 3346\n",
"12 3307\n",
"13 3257\n",
"16 3120\n",
"15 3101\n",
"18 2522\n",
"17 2305\n",
"Season 17\n",
"Name: Season, dtype: int64"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.Season.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "c4da2f8d-a577-49b0-a477-3eab09a38ae9",
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-18T01:39:49.340976Z",
"iopub.status.busy": "2022-10-18T01:39:49.340661Z",
"iopub.status.idle": "2022-10-18T01:39:49.371622Z",
"shell.execute_reply": "2022-10-18T01:39:49.371150Z",
"shell.execute_reply.started": "2022-10-18T01:39:49.340946Z"
},
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"Cartman 9774\n",
"Evil Cartman 23\n",
"New Cartman 18\n",
"Stan, Kyle, Cartman 12\n",
"Kyle, Cartman 7\n",
"Stan, Cartman 7\n",
"Liane and Cartman 6\n",
"Cartman Smurf 5\n",
"Future Cartman 4\n",
"Cartman on Left 3\n",
"Stan/Kenny/ Cartman 3\n",
"Cartman's Good Side 3\n",
"Mrs. Cartman 3\n",
"Stan/Kyle/ Cartman 3\n",
"Cartman on Right 2\n",
"Cartman's voice 2\n",
"Both Cartmans 2\n",
"Stan, Kyle, Kenny, Cartman 2\n",
"Cartman, Stan 2\n",
"Cartman, Kyle, Kenny 2\n",
"Cartman, Kyle 2\n",
"Cartman's Side 2\n",
"Cartman, Choir 2\n",
"Butters, Cartman 2\n",
"Cartman's Bad Side 2\n",
"Stan, Kyle, Cartman, Kenny 1\n",
"Kenny, Stan, Cartman 1\n",
"Stan, Cartman, Kenny 1\n",
"Eric Cartman 1\n",
"Wendy, Cartman 1\n",
"Congressman 1, Cartman 1\n",
"Cheesy Poof Cartman 1\n",
"Cartmans/Boys 1\n",
"Cartman/ Kenny 1\n",
"Cartman's Conscience 1\n",
"Kyle/Cartman 1\n",
"Mrs Cartman 1\n",
"Kyle, Stan, Cartman 1\n",
"Cartman and Kyle 1\n",
"Cartman (Butters) 1\n",
"The Boys (except Cartman) and Dr. Phillips 1\n",
"Cartman, Butters 1\n",
"Cartman and the Gingers 1\n",
"Name: Character, dtype: int64"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[df.Character.str.contains('artman')].Character.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "8c2781f6-e93b-49ec-9cbc-2c357b65f239",
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-18T01:39:49.372448Z",
"iopub.status.busy": "2022-10-18T01:39:49.372292Z",
"iopub.status.idle": "2022-10-18T01:39:49.381325Z",
"shell.execute_reply": "2022-10-18T01:39:49.380648Z",
"shell.execute_reply.started": "2022-10-18T01:39:49.372432Z"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Season</th>\n",
" <th>Episode</th>\n",
" <th>Character</th>\n",
" <th>Line</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Stan</td>\n",
" <td>You guys, you guys! Chef is going away. \\n</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Kyle</td>\n",
" <td>Going away? For how long?\\n</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Stan</td>\n",
" <td>Forever.\\n</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Chef</td>\n",
" <td>I'm sorry boys.\\n</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Stan</td>\n",
" <td>Chef said he's been bored, so he joining a gro...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Chef</td>\n",
" <td>Wow!\\n</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Mrs. Garrison</td>\n",
" <td>Chef?? What kind of questions do you think adv...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Chef</td>\n",
" <td>What's the meaning of life? Why are we here?\\n</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Mrs. Garrison</td>\n",
" <td>I hope you're making the right choice.\\n</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Cartman</td>\n",
" <td>I'm gonna miss him. I'm gonna miss Chef and I...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Stan</td>\n",
" <td>Dude, how are we gonna go on? Chef was our fuh...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Mayor McDaniels</td>\n",
" <td>And we will all miss you, Chef, but we know y...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Jimbo</td>\n",
" <td>Bye-bye!\\n</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Gerald</td>\n",
" <td>Good-bye!\\n</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Mr. Mackey</td>\n",
" <td>So long!\\n</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>A Man</td>\n",
" <td>So long, Chef!\\n</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>A Sign-Holder</td>\n",
" <td>Good-bye, Chef!\\n</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Randy</td>\n",
" <td>Good-bye, Chef! Have a great time with the Sup...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Chef</td>\n",
" <td>Good-bye! ..\\n</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Kyle</td>\n",
" <td>Draw two card, fatass.\\n</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Cartman</td>\n",
" <td>Reverse to you, Jew. \\n</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Stan</td>\n",
" <td>I'll get it. \\n</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Chef</td>\n",
" <td>Hello there, children!\\n</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Stan</td>\n",
" <td>He's back!\\n</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>Kyle</td>\n",
" <td>Yeah!\\n</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Season Episode Character \\\n",
"0 10 1 Stan \n",
"1 10 1 Kyle \n",
"2 10 1 Stan \n",
"3 10 1 Chef \n",
"4 10 1 Stan \n",
"5 10 1 Chef \n",
"6 10 1 Mrs. Garrison \n",
"7 10 1 Chef \n",
"8 10 1 Mrs. Garrison \n",
"9 10 1 Cartman \n",
"10 10 1 Stan \n",
"11 10 1 Mayor McDaniels \n",
"12 10 1 Jimbo \n",
"13 10 1 Gerald \n",
"14 10 1 Mr. Mackey \n",
"15 10 1 A Man \n",
"16 10 1 A Sign-Holder \n",
"17 10 1 Randy \n",
"18 10 1 Chef \n",
"19 10 1 Kyle \n",
"20 10 1 Cartman \n",
"21 10 1 Stan \n",
"22 10 1 Chef \n",
"23 10 1 Stan \n",
"24 10 1 Kyle \n",
"\n",
" Line \n",
"0 You guys, you guys! Chef is going away. \\n \n",
"1 Going away? For how long?\\n \n",
"2 Forever.\\n \n",
"3 I'm sorry boys.\\n \n",
"4 Chef said he's been bored, so he joining a gro... \n",
"5 Wow!\\n \n",
"6 Chef?? What kind of questions do you think adv... \n",
"7 What's the meaning of life? Why are we here?\\n \n",
"8 I hope you're making the right choice.\\n \n",
"9 I'm gonna miss him. I'm gonna miss Chef and I... \n",
"10 Dude, how are we gonna go on? Chef was our fuh... \n",
"11 And we will all miss you, Chef, but we know y... \n",
"12 Bye-bye!\\n \n",
"13 Good-bye!\\n \n",
"14 So long!\\n \n",
"15 So long, Chef!\\n \n",
"16 Good-bye, Chef!\\n \n",
"17 Good-bye, Chef! Have a great time with the Sup... \n",
"18 Good-bye! ..\\n \n",
"19 Draw two card, fatass.\\n \n",
"20 Reverse to you, Jew. \\n \n",
"21 I'll get it. \\n \n",
"22 Hello there, children!\\n \n",
"23 He's back!\\n \n",
"24 Yeah!\\n "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head(25)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "2c267ff5-a11a-426b-9034-8ee776b800e7",
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-18T01:39:49.382208Z",
"iopub.status.busy": "2022-10-18T01:39:49.382029Z",
"iopub.status.idle": "2022-10-18T01:39:49.407971Z",
"shell.execute_reply": "2022-10-18T01:39:49.407239Z",
"shell.execute_reply.started": "2022-10-18T01:39:49.382191Z"
},
"tags": []
},
"outputs": [],
"source": [
"cleanlines = pd.Series([cell.replace('\\n','').strip() for cell in df.Line])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4c22081b-e255-45b5-a2f5-ea4376b26434",
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-18T01:39:49.408983Z",
"iopub.status.busy": "2022-10-18T01:39:49.408787Z",
"iopub.status.idle": "2022-10-18T01:39:49.416631Z",
"shell.execute_reply": "2022-10-18T01:39:49.415993Z",
"shell.execute_reply.started": "2022-10-18T01:39:49.408965Z"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>You guys, you guys! Chef is going away.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Going away? For how long?</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Forever.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>I'm sorry boys.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Chef said he's been bored, so he joining a gro...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>Wow!</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>Chef?? What kind of questions do you think adv...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>What's the meaning of life? Why are we here?</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>I hope you're making the right choice.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>I'm gonna miss him. I'm gonna miss Chef and I...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>Dude, how are we gonna go on? Chef was our fuh...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>And we will all miss you, Chef, but we know y...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>Bye-bye!</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>Good-bye!</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>So long!</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>So long, Chef!</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>Good-bye, Chef!</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>Good-bye, Chef! Have a great time with the Sup...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>Good-bye! ..</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>Draw two card, fatass.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>Reverse to you, Jew.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>I'll get it.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>Hello there, children!</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>He's back!</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>Yeah!</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 0\n",
"0 You guys, you guys! Chef is going away.\n",
"1 Going away? For how long?\n",
"2 Forever.\n",
"3 I'm sorry boys.\n",
"4 Chef said he's been bored, so he joining a gro...\n",
"5 Wow!\n",
"6 Chef?? What kind of questions do you think adv...\n",
"7 What's the meaning of life? Why are we here?\n",
"8 I hope you're making the right choice.\n",
"9 I'm gonna miss him. I'm gonna miss Chef and I...\n",
"10 Dude, how are we gonna go on? Chef was our fuh...\n",
"11 And we will all miss you, Chef, but we know y...\n",
"12 Bye-bye!\n",
"13 Good-bye!\n",
"14 So long!\n",
"15 So long, Chef!\n",
"16 Good-bye, Chef!\n",
"17 Good-bye, Chef! Have a great time with the Sup...\n",
"18 Good-bye! ..\n",
"19 Draw two card, fatass.\n",
"20 Reverse to you, Jew.\n",
"21 I'll get it.\n",
"22 Hello there, children!\n",
"23 He's back!\n",
"24 Yeah!"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.DataFrame(cleanlines).head(25)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "b8a4c7ec-e4c5-43c5-89e9-09f661304938",
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-18T01:39:49.419786Z",
"iopub.status.busy": "2022-10-18T01:39:49.419347Z",
"iopub.status.idle": "2022-10-18T01:39:49.423453Z",
"shell.execute_reply": "2022-10-18T01:39:49.422770Z",
"shell.execute_reply.started": "2022-10-18T01:39:49.419765Z"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n"
]
}
],
"source": [
"print(df.shape[0] - cleanlines.shape[0])"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "993a4b52-e98b-494f-a48c-d4adbd57f510",
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-18T01:39:49.424465Z",
"iopub.status.busy": "2022-10-18T01:39:49.424197Z",
"iopub.status.idle": "2022-10-18T01:39:49.430702Z",
"shell.execute_reply": "2022-10-18T01:39:49.429900Z",
"shell.execute_reply.started": "2022-10-18T01:39:49.424442Z"
},
"tags": []
},
"outputs": [],
"source": [
"train = pd.DataFrame(df.Character)\n",
"train['line'] = cleanlines\n",
"train.columns = ['name','line']"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "148a5ba3-4918-4421-a19a-68a84251cd7b",
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-18T01:39:49.432232Z",
"iopub.status.busy": "2022-10-18T01:39:49.431864Z",
"iopub.status.idle": "2022-10-18T01:39:49.443756Z",
"shell.execute_reply": "2022-10-18T01:39:49.442701Z",
"shell.execute_reply.started": "2022-10-18T01:39:49.432200Z"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>name</th>\n",
" <th>line</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Stan</td>\n",
" <td>You guys, you guys! Chef is going away.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Kyle</td>\n",
" <td>Going away? For how long?</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Stan</td>\n",
" <td>Forever.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Chef</td>\n",
" <td>I'm sorry boys.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Stan</td>\n",
" <td>Chef said he's been bored, so he joining a gro...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>Chef</td>\n",
" <td>Wow!</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>Mrs. Garrison</td>\n",
" <td>Chef?? What kind of questions do you think adv...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>Chef</td>\n",
" <td>What's the meaning of life? Why are we here?</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>Mrs. Garrison</td>\n",
" <td>I hope you're making the right choice.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>Cartman</td>\n",
" <td>I'm gonna miss him. I'm gonna miss Chef and I...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>Stan</td>\n",
" <td>Dude, how are we gonna go on? Chef was our fuh...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>Mayor McDaniels</td>\n",
" <td>And we will all miss you, Chef, but we know y...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>Jimbo</td>\n",
" <td>Bye-bye!</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>Gerald</td>\n",
" <td>Good-bye!</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>Mr. Mackey</td>\n",
" <td>So long!</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>A Man</td>\n",
" <td>So long, Chef!</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>A Sign-Holder</td>\n",
" <td>Good-bye, Chef!</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>Randy</td>\n",
" <td>Good-bye, Chef! Have a great time with the Sup...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>Chef</td>\n",
" <td>Good-bye! ..</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>Kyle</td>\n",
" <td>Draw two card, fatass.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>Cartman</td>\n",
" <td>Reverse to you, Jew.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>Stan</td>\n",
" <td>I'll get it.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>Chef</td>\n",
" <td>Hello there, children!</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>Stan</td>\n",
" <td>He's back!</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>Kyle</td>\n",
" <td>Yeah!</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" name line\n",
"0 Stan You guys, you guys! Chef is going away.\n",
"1 Kyle Going away? For how long?\n",
"2 Stan Forever.\n",
"3 Chef I'm sorry boys.\n",
"4 Stan Chef said he's been bored, so he joining a gro...\n",
"5 Chef Wow!\n",
"6 Mrs. Garrison Chef?? What kind of questions do you think adv...\n",
"7 Chef What's the meaning of life? Why are we here?\n",
"8 Mrs. Garrison I hope you're making the right choice.\n",
"9 Cartman I'm gonna miss him. I'm gonna miss Chef and I...\n",
"10 Stan Dude, how are we gonna go on? Chef was our fuh...\n",
"11 Mayor McDaniels And we will all miss you, Chef, but we know y...\n",
"12 Jimbo Bye-bye!\n",
"13 Gerald Good-bye!\n",
"14 Mr. Mackey So long!\n",
"15 A Man So long, Chef!\n",
"16 A Sign-Holder Good-bye, Chef!\n",
"17 Randy Good-bye, Chef! Have a great time with the Sup...\n",
"18 Chef Good-bye! ..\n",
"19 Kyle Draw two card, fatass.\n",
"20 Cartman Reverse to you, Jew.\n",
"21 Stan I'll get it.\n",
"22 Chef Hello there, children!\n",
"23 Stan He's back!\n",
"24 Kyle Yeah!"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train.head(25)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "7466b2a6-b579-4bac-a515-df4f040a7b27",
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-18T01:39:49.445428Z",
"iopub.status.busy": "2022-10-18T01:39:49.445096Z",
"iopub.status.idle": "2022-10-18T01:39:49.615700Z",
"shell.execute_reply": "2022-10-18T01:39:49.614962Z",
"shell.execute_reply.started": "2022-10-18T01:39:49.445397Z"
},
"tags": []
},
"outputs": [],
"source": [
"train.to_csv('data/train.csv',index=False)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

143681
train/data/All-seasons.csv Normal file

File diff suppressed because it is too large Load diff

70897
train/data/train.csv Normal file

File diff suppressed because it is too large Load diff

26
train/test/beam.py Normal file
View file

@ -0,0 +1,26 @@
from transformers.models.auto.tokenization_auto import AutoTokenizer
from transformers.models.auto.modeling_auto import AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-medium')
model = AutoModelForCausalLM.from_pretrained('../output-medium')
# chatting 5 times with beam search
for step in range(5):
# take user input
text = input(">> You:")
# encode the input and add end of string token
input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt")
# concatenate new user input with chat history (if there is)
bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids
# generate a bot response
chat_history_ids = model.generate(
bot_input_ids,
max_length=1000,
num_beams=3,
early_stopping=True,
pad_token_id=tokenizer.eos_token_id
)
#print the output
output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
print(f"Cartman: {output}")

25
train/test/greedy.py Normal file
View file

@ -0,0 +1,25 @@
from transformers.models.auto.tokenization_auto import AutoTokenizer
from transformers.models.auto.modeling_auto import AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-large')
model = AutoModelForCausalLM.from_pretrained('microsoft/DialoGPT-large')
# model = AutoModelForCausalLM.from_pretrained('../output-medium')
# chatting 5 times with greedy search
for step in range(5):
# take user input
text = input(">> You: ")
# encode the input and add end of string token
input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt")
# concatenate new user input with chat history (if there is)
bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids
# generate a bot response
chat_history_ids = model.generate(
bot_input_ids,
max_length=1000,
pad_token_id=tokenizer.eos_token_id,
)
#print the output
output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
print(f"Bot: {output}")

34
train/test/nucleus.py Normal file
View file

@ -0,0 +1,34 @@
from transformers.models.auto.tokenization_auto import AutoTokenizer
from transformers.models.auto.modeling_auto import AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-medium')
model = AutoModelForCausalLM.from_pretrained('microsoft/DialoGPT-medium')
#model = AutoModelForCausalLM.from_pretrained('../output-medium')
# chatting 5 times with nucleus & top-k sampling & tweaking temperature & multiple
# sentences
for step in range(5):
# take user input
text = input(">> You: ")
# encode the input and add end of string token
input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt")
# concatenate new user input with chat history (if there is)
bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids
# generate a bot response
chat_history_ids_list = model.generate(
bot_input_ids,
max_length=1000,
do_sample=True,
top_p=0.95,
top_k=50,
temperature=0.75,
num_return_sequences=5,
pad_token_id=tokenizer.eos_token_id
)
#print the outputs
for i in range(len(chat_history_ids_list)):
output = tokenizer.decode(chat_history_ids_list[i][bot_input_ids.shape[-1]:], skip_special_tokens=True)
print(f"Cartman {i}: {output}")
choice_index = int(input("Choose the response you want for the next input: "))
chat_history_ids = torch.unsqueeze(chat_history_ids_list[choice_index], dim=0)

26
train/test/sample.py Normal file
View file

@ -0,0 +1,26 @@
from transformers.models.auto.tokenization_auto import AutoTokenizer
from transformers.models.auto.modeling_auto import AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-medium')
model = AutoModelForCausalLM.from_pretrained('../output-medium')
# chatting 5 times with sampling
for step in range(5):
# take user input
text = input(">> You: ")
# encode the input and add end of string token
input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt")
# concatenate new user input with chat history (if there is)
bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids
# generate a bot response
chat_history_ids = model.generate(
bot_input_ids,
max_length=1000,
do_sample=True,
top_k=0,
pad_token_id=tokenizer.eos_token_id
)
#print the output
output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
print(f"Cartman: {output}")

27
train/test/sample_topk.py Normal file
View file

@ -0,0 +1,27 @@
from transformers.models.auto.tokenization_auto import AutoTokenizer
from transformers.models.auto.modeling_auto import AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-medium')
model = AutoModelForCausalLM.from_pretrained('../output-medium')
# chatting 5 times with Top K sampling & tweaking temperature
for step in range(5):
# take user input
text = input(">> You: ")
# encode the input and add end of string token
input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt")
# concatenate new user input with chat history (if there is)
bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids
# generate a bot response
chat_history_ids = model.generate(
bot_input_ids,
max_length=1000,
do_sample=True,
top_k=100,
temperature=0.75,
pad_token_id=tokenizer.eos_token_id
)
#print the output
output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
print(f"Cartman: {output}")

29
train/test/top_p.py Normal file
View file

@ -0,0 +1,29 @@
from transformers.models.auto.tokenization_auto import AutoTokenizer
from transformers.models.auto.modeling_auto import AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-large')
model = AutoModelForCausalLM.from_pretrained('microsoft/DialoGPT-large')
#model = AutoModelForCausalLM.from_pretrained('../output-medium')
# chatting 5 times with nucleus sampling & tweaking temperature
for step in range(10):
# take user input
text = input(">> You: ")
# encode the input and add end of string token
input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt")
# concatenate new user input with chat history (if there is)
bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids
# generate a bot response
chat_history_ids = model.generate(
bot_input_ids,
max_length=1000,
do_sample=True,
top_p=0.95,
top_k=0,
temperature=0.75,
pad_token_id=tokenizer.eos_token_id
)
#print the output
output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
print(f"Cartman: {output}")

2761
train/train.ipynb Normal file

File diff suppressed because it is too large Load diff

571
train/train.py Normal file
View file

@ -0,0 +1,571 @@
# all the imports
import glob
import logging
import os
import pickle
import random
import re
import shutil
from typing import Dict, List, Tuple
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm.notebook import tqdm, trange
from pathlib import Path
from transformers import (
MODEL_WITH_LM_HEAD_MAPPING,
WEIGHTS_NAME,
AdamW,
AutoConfig,
PreTrainedModel,
PreTrainedTokenizer,
get_linear_schedule_with_warmup,
)
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
# --------------------------------------------------------------------------
data = pd.read_csv('data/train.csv')
CHARACTER_NAME = 'TARGET'
contexted = []
# context window of size 7
n = 7
for i in data[data.name == CHARACTER_NAME].index:
if i < n:
continue
row = []
prev = i - 1 - n # we additionally substract 1, so row will contain current response and 7 previous responses
for j in range(i, prev, -1):
row.append(data.line[j])
contexted.append(row)
columns = ['response', 'context']
columns = columns + ['context/' + str(i) for i in range(n - 1)]
df = pd.DataFrame.from_records(contexted, columns=columns)
trn_df, val_df = train_test_split(df, test_size=0.1)
# create dataset suitable for our model
def construct_conv(row, tokenizer, eos = True):
flatten = lambda l: [item for sublist in l for item in sublist]
conv = list(reversed([tokenizer.encode(x) + [tokenizer.eos_token_id] for x in row]))
conv = flatten(conv)
return conv
class ConversationDataset(Dataset):
def __init__(self, tokenizer: PreTrainedTokenizer, args, df, block_size=512):
block_size = block_size - (tokenizer.model_max_length - tokenizer.max_len_single_sentence)
directory = args.cache_dir
cached_features_file = os.path.join(
directory, args.model_type + "_cached_lm_" + str(block_size)
)
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
with open(cached_features_file, "rb") as handle:
self.examples = pickle.load(handle)
else:
logger.info("Creating features from dataset file at %s", directory)
self.examples = []
for _, row in df.iterrows():
conv = construct_conv(row, tokenizer)
self.examples.append(conv)
logger.info("Saving features into cached file %s", cached_features_file)
with open(cached_features_file, "wb") as handle:
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
def __len__(self):
return len(self.examples)
def __getitem__(self, item):
return torch.tensor(self.examples[item], dtype=torch.long)
# Cacheing and storing of data/checkpoints
def load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False):
return ConversationDataset(tokenizer, args, df_val if evaluate else df_trn)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def _sorted_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> List[str]:
ordering_and_checkpoint_path = []
glob_checkpoints = glob.glob(os.path.join(args.output_dir, "{}-*".format(checkpoint_prefix)))
for path in glob_checkpoints:
if use_mtime:
ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
else:
regex_match = re.match(".*{}-([0-9]+)".format(checkpoint_prefix), path)
if regex_match and regex_match.groups():
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
return checkpoints_sorted
def _rotate_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> None:
if not args.save_total_limit:
return
if args.save_total_limit <= 0:
return
# Check if we should delete older checkpoint(s)
checkpoints_sorted = _sorted_checkpoints(args, checkpoint_prefix, use_mtime)
if len(checkpoints_sorted) <= args.save_total_limit:
return
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - args.save_total_limit)
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
for checkpoint in checkpoints_to_be_deleted:
logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
shutil.rmtree(checkpoint)
from transformers import AutoModelWithLMHead, AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
# Configs
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
# Args to allow for easy conversion of python script to notebook
class Args():
def __init__(self):
self.output_dir = 'models/output-medium'
self.model_type = 'gpt2'
self.model_name_or_path = 'microsoft/DialoGPT-large'
self.config_name = 'microsoft/DialoGPT-large'
self.tokenizer_name = 'microsoft/DialoGPT-large'
self.cache_dir = 'cached'
self.block_size = 512
self.do_train = True
self.do_eval = True
self.evaluate_during_training = False
self.per_gpu_train_batch_size = 4
self.per_gpu_eval_batch_size = 4
self.gradient_accumulation_steps = 1
self.learning_rate = 5e-5
self.weight_decay = 0.0
self.adam_epsilon = 1e-8
self.max_grad_norm = 1.0
self.num_train_epochs = 4
self.max_steps = -1
self.warmup_steps = 0
self.logging_steps = 1000
self.save_steps = 3500
self.save_total_limit = None
self.eval_all_checkpoints = False
self.no_cuda = False
self.overwrite_output_dir = True
self.overwrite_cache = True
self.should_continue = False
self.seed = 42
self.local_rank = -1
self.fp16 = False
self.fp16_opt_level = 'O1'
args = Args()
def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedTokenizer) -> Tuple[int, float]:
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
def collate(examples: List[torch.Tensor]):
if tokenizer._pad_token is None:
return pad_sequence(examples, batch_first=True)
return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(
train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=collate, drop_last = True
)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
model = model.module if hasattr(model, "module") else model # Take care of distributed/parallel training
model.resize_token_embeddings(len(tokenizer))
# add_special_tokens_(model, tokenizer)
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
# Check if saved optimizer or scheduler states exist
if (
args.model_name_or_path
and os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt"))
and os.path.isfile(os.path.join(args.model_name_or_path, "scheduler.pt"))
):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if args.model_name_or_path and os.path.exists(args.model_name_or_path):
try:
# set global_step to gobal_step of last saved checkpoint from model path
checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
global_step = int(checkpoint_suffix)
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
except ValueError:
logger.info(" Starting fine-tuning.")
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
)
set_seed(args) # Added here for reproducibility
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
inputs, labels = (batch, batch)
if inputs.shape[1] > 1024: continue
inputs = inputs.to(args.device)
labels = labels.to(args.device)
model.train()
outputs = model(inputs, labels=labels)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if (
args.local_rank == -1 and args.evaluate_during_training
): # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
checkpoint_prefix = "checkpoint"
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "{}-{}".format(checkpoint_prefix, global_step))
os.makedirs(output_dir, exist_ok=True)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
_rotate_checkpoints(args, checkpoint_prefix)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
# Evaluation of some model
def evaluate(args, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, df_trn, df_val, prefix="") -> Dict:
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_output_dir = args.output_dir
eval_dataset = load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=True)
os.makedirs(eval_output_dir, exist_ok=True)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
def collate(examples: List[torch.Tensor]):
if tokenizer._pad_token is None:
return pad_sequence(examples, batch_first=True)
return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(
eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate, drop_last = True
)
# multi-gpu evaluate
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
model.eval()
for batch in tqdm(eval_dataloader, desc="Evaluating"):
inputs, labels = (batch, batch)
inputs = inputs.to(args.device)
labels = labels.to(args.device)
with torch.no_grad():
outputs = model(inputs, labels=labels)
lm_loss = outputs[0]
eval_loss += lm_loss.mean().item()
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
perplexity = torch.exp(torch.tensor(eval_loss))
result = {"perplexity": perplexity}
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return result
# Main runner
def main(df_trn, df_val):
args = Args()
if args.should_continue:
sorted_checkpoints = _sorted_checkpoints(args)
if len(sorted_checkpoints) == 0:
raise ValueError("Used --should_continue but no checkpoint was found in --output_dir.")
else:
args.model_name_or_path = sorted_checkpoints[-1]
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
and not args.should_continue
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
# Setup CUDA, GPU & distributed training
device = torch.device("cuda")
args.n_gpu = torch.cuda.device_count()
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
# Set seed
set_seed(args)
config = AutoConfig.from_pretrained(args.config_name, cache_dir=args.cache_dir)
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, cache_dir=args.cache_dir)
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
from_tf=False,
config=config,
cache_dir=args.cache_dir,
)
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False)
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained()
if args.do_train:
# Create output directory if needed
os.makedirs(args.output_dir, exist_ok=True)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
# Load a trained model and vocabulary that you have fine-tuned
model = AutoModelForCausalLM.from_pretrained(args.output_dir)
tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
model.to(args.device)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
)
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
model = AutoModelForCausalLM.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, df_trn, df_val, prefix=prefix)
result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
results.update(result)
return results
main(trn_df, val_df)