from transformers.models.auto.tokenization_auto import AutoTokenizer from transformers.models.auto.modeling_auto import AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-medium') model = AutoModelForCausalLM.from_pretrained('microsoft/DialoGPT-medium') #model = AutoModelForCausalLM.from_pretrained('../output-medium') # chatting 5 times with nucleus & top-k sampling & tweaking temperature & multiple # sentences for step in range(5): # take user input text = input(">> You: ") # encode the input and add end of string token input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt") # concatenate new user input with chat history (if there is) bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids # generate a bot response chat_history_ids_list = model.generate( bot_input_ids, max_length=1000, do_sample=True, top_p=0.95, top_k=50, temperature=0.75, num_return_sequences=5, pad_token_id=tokenizer.eos_token_id ) #print the outputs for i in range(len(chat_history_ids_list)): output = tokenizer.decode(chat_history_ids_list[i][bot_input_ids.shape[-1]:], skip_special_tokens=True) print(f"Cartman {i}: {output}") choice_index = int(input("Choose the response you want for the next input: ")) chat_history_ids = torch.unsqueeze(chat_history_ids_list[choice_index], dim=0)