610 lines
22 KiB
Python
610 lines
22 KiB
Python
# all the imports
|
|
|
|
from transformers.models.auto.configuration_auto import AutoConfig
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
from transformers.tokenization_utils import PreTrainedTokenizer
|
|
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
|
from transformers.models.auto.modeling_auto import (
|
|
AutoModelForCausalLM,
|
|
MODEL_WITH_LM_HEAD_MAPPING,
|
|
)
|
|
from transformers.utils import WEIGHTS_NAME
|
|
from transformers.optimization import (
|
|
AdamW,
|
|
get_linear_schedule_with_warmup,
|
|
)
|
|
|
|
import torch
|
|
import glob
|
|
import logging
|
|
import os
|
|
import pickle
|
|
import random
|
|
import re
|
|
import shutil
|
|
from typing import Dict, List, Tuple
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
from torch.nn.utils.rnn import pad_sequence
|
|
from torch.utils.data import (
|
|
DataLoader,
|
|
Dataset,
|
|
RandomSampler,
|
|
SequentialSampler,
|
|
)
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
from tqdm import tqdm, trange
|
|
|
|
from torch.utils.tensorboard.writer import SummaryWriter
|
|
|
|
# --------------------------------------------------------------------------
|
|
|
|
data = pd.read_csv('data/train.csv')
|
|
|
|
CHARACTER_NAME = 'Cartman'
|
|
contexted = []
|
|
|
|
# context window of size 7
|
|
n = 7
|
|
|
|
for i in data[data.name == CHARACTER_NAME].index:
|
|
if i < n:
|
|
continue
|
|
row = []
|
|
prev = i - 1 - n # we additionally substract 1, so row will contain current response and 7 previous responses
|
|
for j in range(i, prev, -1):
|
|
row.append(data.line[j])
|
|
contexted.append(row)
|
|
|
|
columns = ['response', 'context']
|
|
columns = columns + ['context/' + str(i) for i in range(n - 1)]
|
|
|
|
df = pd.DataFrame.from_records(contexted, columns=columns)
|
|
|
|
trn_df, val_df = train_test_split(df, test_size=0.1)
|
|
|
|
# create dataset suitable for our model
|
|
|
|
|
|
def construct_conv(row, tokenizer, eos=True):
|
|
def flatten(l): return [item for sublist in l for item in sublist]
|
|
conv = list(
|
|
reversed([tokenizer.encode(x) + [tokenizer.eos_token_id] for x in row]))
|
|
conv = flatten(conv)
|
|
return conv
|
|
|
|
|
|
class ConversationDataset(Dataset):
|
|
def __init__(self, tokenizer: PreTrainedTokenizer, args, df, block_size=512):
|
|
|
|
block_size = block_size - \
|
|
(tokenizer.model_max_length - tokenizer.max_len_single_sentence)
|
|
|
|
directory = args.cache_dir
|
|
cached_features_file = os.path.join(
|
|
directory, args.model_type + "_cached_lm_" + str(block_size)
|
|
)
|
|
|
|
if os.path.exists(cached_features_file) and not args.overwrite_cache:
|
|
logger.info("Loading features from cached file %s",
|
|
cached_features_file)
|
|
with open(cached_features_file, "rb") as handle:
|
|
self.examples = pickle.load(handle)
|
|
else:
|
|
logger.info("Creating features from dataset file at %s", directory)
|
|
|
|
self.examples = []
|
|
for _, row in df.iterrows():
|
|
conv = construct_conv(row, tokenizer)
|
|
self.examples.append(conv)
|
|
|
|
logger.info("Saving features into cached file %s",
|
|
cached_features_file)
|
|
with open(cached_features_file, "wb") as handle:
|
|
pickle.dump(self.examples, handle,
|
|
protocol=pickle.HIGHEST_PROTOCOL)
|
|
|
|
def __len__(self):
|
|
return len(self.examples)
|
|
|
|
def __getitem__(self, item):
|
|
return torch.tensor(self.examples[item], dtype=torch.long)
|
|
|
|
# Caching and storing of data/checkpoints
|
|
|
|
|
|
def load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False):
|
|
return ConversationDataset(tokenizer, args, df_val if evaluate else df_trn)
|
|
|
|
|
|
def set_seed(args):
|
|
random.seed(args.seed)
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
if args.n_gpu > 0:
|
|
torch.cuda.manual_seed_all(args.seed)
|
|
|
|
|
|
def _sorted_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> List[str]:
|
|
ordering_and_checkpoint_path = []
|
|
|
|
glob_checkpoints = glob.glob(os.path.join(
|
|
args.output_dir, "{}-*".format(checkpoint_prefix)))
|
|
|
|
for path in glob_checkpoints:
|
|
if use_mtime:
|
|
ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
|
|
else:
|
|
regex_match = re.match(
|
|
".*{}-([0-9]+)".format(checkpoint_prefix), path)
|
|
if regex_match and regex_match.groups():
|
|
ordering_and_checkpoint_path.append(
|
|
(int(regex_match.groups()[0]), path))
|
|
|
|
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
|
|
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
|
|
return checkpoints_sorted
|
|
|
|
|
|
def _rotate_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> None:
|
|
if not args.save_total_limit:
|
|
return
|
|
if args.save_total_limit <= 0:
|
|
return
|
|
|
|
# Check if we should delete older checkpoint(s)
|
|
checkpoints_sorted = _sorted_checkpoints(
|
|
args, checkpoint_prefix, use_mtime)
|
|
if len(checkpoints_sorted) <= args.save_total_limit:
|
|
return
|
|
|
|
number_of_checkpoints_to_delete = max(
|
|
0, len(checkpoints_sorted) - args.save_total_limit)
|
|
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
|
|
for checkpoint in checkpoints_to_be_deleted:
|
|
logger.info(
|
|
"Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
|
|
shutil.rmtree(checkpoint)
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
|
|
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
|
|
|
|
"""
|
|
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
|
|
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
|
|
using a masked language modeling (MLM) loss.
|
|
"""
|
|
|
|
# Configs
|
|
logger = logging.getLogger(__name__)
|
|
|
|
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
|
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
|
|
|
# Args to allow for easy conversion of python script to notebook
|
|
|
|
|
|
class Args():
|
|
def __init__(self):
|
|
self.output_dir = 'cartman/models/output-medium-3ep'
|
|
self.model_type = 'gpt2'
|
|
self.model_name_or_path = 'microsoft/DialoGPT-medium'
|
|
self.config_name = 'microsoft/DialoGPT-medium'
|
|
self.tokenizer_name = 'microsoft/DialoGPT-medium'
|
|
self.cache_dir = 'cached'
|
|
self.block_size = 512
|
|
self.do_train = True
|
|
self.do_eval = True
|
|
self.evaluate_during_training = False
|
|
self.per_gpu_train_batch_size = 4
|
|
self.per_gpu_eval_batch_size = 4
|
|
self.gradient_accumulation_steps = 1
|
|
self.learning_rate = 5e-5
|
|
self.weight_decay = 0.0
|
|
self.adam_epsilon = 1e-8
|
|
self.max_grad_norm = 1.0
|
|
self.num_train_epochs = 3
|
|
self.max_steps = -1
|
|
self.warmup_steps = 0
|
|
self.logging_steps = 1000
|
|
self.save_steps = 3500
|
|
self.save_total_limit = None
|
|
self.eval_all_checkpoints = False
|
|
self.no_cuda = False
|
|
self.overwrite_output_dir = True
|
|
self.overwrite_cache = True
|
|
self.should_continue = False
|
|
self.seed = 42
|
|
self.local_rank = -1
|
|
self.fp16 = False
|
|
self.fp16_opt_level = 'O1'
|
|
|
|
|
|
args = Args()
|
|
|
|
|
|
def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedTokenizer) -> Tuple[int, float]:
|
|
""" Train the model """
|
|
if args.local_rank in [-1, 0]:
|
|
tb_writer = SummaryWriter()
|
|
|
|
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
|
|
|
|
def collate(examples: List[torch.Tensor]):
|
|
if tokenizer._pad_token is None:
|
|
return pad_sequence(examples, batch_first=True)
|
|
return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)
|
|
|
|
train_sampler = RandomSampler(
|
|
train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
|
|
train_dataloader = DataLoader(
|
|
train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=collate, drop_last=True
|
|
)
|
|
|
|
if args.max_steps > 0:
|
|
t_total = args.max_steps
|
|
args.num_train_epochs = args.max_steps // (
|
|
len(train_dataloader) // args.gradient_accumulation_steps) + 1
|
|
else:
|
|
t_total = len(
|
|
train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
|
|
|
|
# Take care of distributed/parallel training
|
|
model = model.module if hasattr(model, "module") else model
|
|
model.resize_token_embeddings(len(tokenizer))
|
|
# add_special_tokens_(model, tokenizer)
|
|
|
|
# Prepare optimizer and schedule (linear warmup and decay)
|
|
no_decay = ["bias", "LayerNorm.weight"]
|
|
optimizer_grouped_parameters = [
|
|
{
|
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
|
"weight_decay": args.weight_decay,
|
|
},
|
|
{"params": [p for n, p in model.named_parameters() if any(
|
|
nd in n for nd in no_decay)], "weight_decay": 0.0},
|
|
]
|
|
optimizer = AdamW(optimizer_grouped_parameters,
|
|
lr=args.learning_rate, eps=args.adam_epsilon)
|
|
scheduler = get_linear_schedule_with_warmup(
|
|
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
|
|
)
|
|
|
|
# Check if saved optimizer or scheduler states exist
|
|
if (
|
|
args.model_name_or_path
|
|
and os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt"))
|
|
and os.path.isfile(os.path.join(args.model_name_or_path, "scheduler.pt"))
|
|
):
|
|
# Load in optimizer and scheduler states
|
|
optimizer.load_state_dict(torch.load(
|
|
os.path.join(args.model_name_or_path, "optimizer.pt")))
|
|
scheduler.load_state_dict(torch.load(
|
|
os.path.join(args.model_name_or_path, "scheduler.pt")))
|
|
|
|
if args.fp16:
|
|
try:
|
|
from apex import amp
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
|
|
model, optimizer = amp.initialize(
|
|
model, optimizer, opt_level=args.fp16_opt_level)
|
|
|
|
# multi-gpu training (should be after apex fp16 initialization)
|
|
if args.n_gpu > 1:
|
|
model = torch.nn.DataParallel(model)
|
|
|
|
# Distributed training (should be after apex fp16 initialization)
|
|
if args.local_rank != -1:
|
|
model = torch.nn.parallel.DistributedDataParallel(
|
|
model, device_ids=[
|
|
args.local_rank], output_device=args.local_rank, find_unused_parameters=True
|
|
)
|
|
|
|
# Train!
|
|
logger.info("***** Running training *****")
|
|
logger.info(" Num examples = %d", len(train_dataset))
|
|
logger.info(" Num Epochs = %d", args.num_train_epochs)
|
|
logger.info(" Instantaneous batch size per GPU = %d",
|
|
args.per_gpu_train_batch_size)
|
|
logger.info(
|
|
" Total train batch size (w. parallel, distributed & accumulation) = %d",
|
|
args.train_batch_size
|
|
* args.gradient_accumulation_steps
|
|
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
|
|
)
|
|
logger.info(" Gradient Accumulation steps = %d",
|
|
args.gradient_accumulation_steps)
|
|
logger.info(" Total optimization steps = %d", t_total)
|
|
|
|
global_step = 0
|
|
epochs_trained = 0
|
|
steps_trained_in_current_epoch = 0
|
|
# Check if continuing training from a checkpoint
|
|
if args.model_name_or_path and os.path.exists(args.model_name_or_path):
|
|
try:
|
|
# set global_step to gobal_step of last saved checkpoint from model path
|
|
checkpoint_suffix = args.model_name_or_path.split(
|
|
"-")[-1].split("/")[0]
|
|
global_step = int(checkpoint_suffix)
|
|
epochs_trained = global_step // (len(train_dataloader) //
|
|
args.gradient_accumulation_steps)
|
|
steps_trained_in_current_epoch = global_step % (
|
|
len(train_dataloader) // args.gradient_accumulation_steps)
|
|
|
|
logger.info(
|
|
" Continuing training from checkpoint, will skip to saved global_step")
|
|
logger.info(" Continuing training from epoch %d", epochs_trained)
|
|
logger.info(
|
|
" Continuing training from global step %d", global_step)
|
|
logger.info(" Will skip the first %d steps in the first epoch",
|
|
steps_trained_in_current_epoch)
|
|
except ValueError:
|
|
logger.info(" Starting fine-tuning.")
|
|
|
|
tr_loss, logging_loss = 0.0, 0.0
|
|
|
|
model.zero_grad()
|
|
train_iterator = trange(
|
|
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
|
|
)
|
|
set_seed(args) # Added here for reproducibility
|
|
for _ in train_iterator:
|
|
epoch_iterator = tqdm(train_dataloader, desc="Iteration",
|
|
disable=args.local_rank not in [-1, 0])
|
|
for step, batch in enumerate(epoch_iterator):
|
|
|
|
# Skip past any already trained steps if resuming training
|
|
if steps_trained_in_current_epoch > 0:
|
|
steps_trained_in_current_epoch -= 1
|
|
continue
|
|
|
|
inputs, labels = (batch, batch)
|
|
if inputs.shape[1] > 1024:
|
|
continue
|
|
inputs = inputs.to(args.device)
|
|
labels = labels.to(args.device)
|
|
model.train()
|
|
outputs = model(inputs, labels=labels)
|
|
# model outputs are always tuple in transformers (see doc)
|
|
loss = outputs[0]
|
|
|
|
if args.n_gpu > 1:
|
|
loss = loss.mean() # mean() to average on multi-gpu parallel training
|
|
if args.gradient_accumulation_steps > 1:
|
|
loss = loss / args.gradient_accumulation_steps
|
|
|
|
if args.fp16:
|
|
with amp.scale_loss(loss, optimizer) as scaled_loss:
|
|
scaled_loss.backward()
|
|
else:
|
|
loss.backward()
|
|
|
|
tr_loss += loss.item()
|
|
if (step + 1) % args.gradient_accumulation_steps == 0:
|
|
if args.fp16:
|
|
torch.nn.utils.clip_grad_norm_(
|
|
amp.master_params(optimizer), args.max_grad_norm)
|
|
else:
|
|
torch.nn.utils.clip_grad_norm_(
|
|
model.parameters(), args.max_grad_norm)
|
|
optimizer.step()
|
|
scheduler.step() # Update learning rate schedule
|
|
model.zero_grad()
|
|
global_step += 1
|
|
|
|
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
|
|
# Log metrics
|
|
if (
|
|
args.local_rank == -1 and args.evaluate_during_training
|
|
): # Only evaluate when single GPU otherwise metrics may not average well
|
|
results = evaluate(args, model, tokenizer)
|
|
for key, value in results.items():
|
|
tb_writer.add_scalar(
|
|
"eval_{}".format(key), value, global_step)
|
|
tb_writer.add_scalar(
|
|
"lr", scheduler.get_lr()[0], global_step)
|
|
tb_writer.add_scalar(
|
|
"loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
|
|
logging_loss = tr_loss
|
|
|
|
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
|
|
checkpoint_prefix = "checkpoint"
|
|
# Save model checkpoint
|
|
output_dir = os.path.join(
|
|
args.output_dir, "{}-{}".format(checkpoint_prefix, global_step))
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
model_to_save = (
|
|
model.module if hasattr(model, "module") else model
|
|
) # Take care of distributed/parallel training
|
|
model_to_save.save_pretrained(output_dir)
|
|
tokenizer.save_pretrained(output_dir)
|
|
|
|
torch.save(args, os.path.join(
|
|
output_dir, "training_args.bin"))
|
|
logger.info("Saving model checkpoint to %s", output_dir)
|
|
|
|
_rotate_checkpoints(args, checkpoint_prefix)
|
|
|
|
torch.save(optimizer.state_dict(), os.path.join(
|
|
output_dir, "optimizer.pt"))
|
|
torch.save(scheduler.state_dict(), os.path.join(
|
|
output_dir, "scheduler.pt"))
|
|
logger.info(
|
|
"Saving optimizer and scheduler states to %s", output_dir)
|
|
|
|
if args.max_steps > 0 and global_step > args.max_steps:
|
|
epoch_iterator.close()
|
|
break
|
|
if args.max_steps > 0 and global_step > args.max_steps:
|
|
train_iterator.close()
|
|
break
|
|
|
|
if args.local_rank in [-1, 0]:
|
|
tb_writer.close()
|
|
|
|
return global_step, tr_loss / global_step
|
|
|
|
# Evaluation of some model
|
|
|
|
|
|
def evaluate(args, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, df_trn, df_val, prefix="") -> Dict:
|
|
# Loop to handle MNLI double evaluation (matched, mis-matched)
|
|
eval_output_dir = args.output_dir
|
|
|
|
eval_dataset = load_and_cache_examples(
|
|
args, tokenizer, df_trn, df_val, evaluate=True)
|
|
os.makedirs(eval_output_dir, exist_ok=True)
|
|
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
|
|
# Note that DistributedSampler samples randomly
|
|
|
|
def collate(examples: List[torch.Tensor]):
|
|
if tokenizer._pad_token is None:
|
|
return pad_sequence(examples, batch_first=True)
|
|
return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)
|
|
|
|
eval_sampler = SequentialSampler(eval_dataset)
|
|
eval_dataloader = DataLoader(
|
|
eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate, drop_last=True
|
|
)
|
|
|
|
# multi-gpu evaluate
|
|
if args.n_gpu > 1:
|
|
model = torch.nn.DataParallel(model)
|
|
|
|
# Eval!
|
|
logger.info("***** Running evaluation {} *****".format(prefix))
|
|
logger.info(" Num examples = %d", len(eval_dataset))
|
|
logger.info(" Batch size = %d", args.eval_batch_size)
|
|
eval_loss = 0.0
|
|
nb_eval_steps = 0
|
|
model.eval()
|
|
|
|
for batch in tqdm(eval_dataloader, desc="Evaluating"):
|
|
inputs, labels = (batch, batch)
|
|
inputs = inputs.to(args.device)
|
|
labels = labels.to(args.device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(inputs, labels=labels)
|
|
lm_loss = outputs[0]
|
|
eval_loss += lm_loss.mean().item()
|
|
nb_eval_steps += 1
|
|
|
|
eval_loss = eval_loss / nb_eval_steps
|
|
perplexity = torch.exp(torch.tensor(eval_loss))
|
|
|
|
result = {"perplexity": perplexity}
|
|
|
|
output_eval_file = os.path.join(
|
|
eval_output_dir, prefix, "eval_results.txt")
|
|
with open(output_eval_file, "w") as writer:
|
|
logger.info("***** Eval results {} *****".format(prefix))
|
|
for key in sorted(result.keys()):
|
|
logger.info(" %s = %s", key, str(result[key]))
|
|
writer.write("%s = %s\n" % (key, str(result[key])))
|
|
|
|
return result
|
|
|
|
# Main runner
|
|
|
|
|
|
def main(df_trn, df_val):
|
|
args = Args()
|
|
|
|
if args.should_continue:
|
|
sorted_checkpoints = _sorted_checkpoints(args)
|
|
if len(sorted_checkpoints) == 0:
|
|
raise ValueError(
|
|
"Used --should_continue but no checkpoint was found in --output_dir.")
|
|
else:
|
|
args.model_name_or_path = sorted_checkpoints[-1]
|
|
|
|
if (
|
|
os.path.exists(args.output_dir)
|
|
and os.listdir(args.output_dir)
|
|
and args.do_train
|
|
and not args.overwrite_output_dir
|
|
and not args.should_continue
|
|
):
|
|
raise ValueError(
|
|
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
|
|
args.output_dir
|
|
)
|
|
)
|
|
|
|
# Setup CUDA, GPU & distributed training
|
|
device = torch.device("cuda")
|
|
args.n_gpu = torch.cuda.device_count()
|
|
args.device = device
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
|
|
)
|
|
logger.warning(
|
|
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
|
|
args.local_rank,
|
|
device,
|
|
args.n_gpu,
|
|
bool(args.local_rank != -1),
|
|
args.fp16,
|
|
)
|
|
|
|
# Set seed
|
|
set_seed(args)
|
|
|
|
config = AutoConfig.from_pretrained(
|
|
args.config_name, cache_dir=args.cache_dir)
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
args.tokenizer_name, cache_dir=args.cache_dir)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
args.model_name_or_path,
|
|
from_tf=False,
|
|
config=config,
|
|
cache_dir=args.cache_dir,
|
|
)
|
|
model.to(args.device)
|
|
|
|
logger.info("Training/evaluation parameters %s", args)
|
|
|
|
# Training
|
|
if args.do_train:
|
|
train_dataset = load_and_cache_examples(
|
|
args, tokenizer, df_trn, df_val, evaluate=False)
|
|
|
|
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
|
|
logger.info(" global_step = %s, average loss = %s",
|
|
global_step, tr_loss)
|
|
|
|
# Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained()
|
|
if args.do_train:
|
|
# Create output directory if needed
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
|
|
logger.info("Saving model checkpoint to %s", args.output_dir)
|
|
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
|
|
# They can then be reloaded using `from_pretrained()`
|
|
model_to_save = (
|
|
model.module if hasattr(model, "module") else model
|
|
) # Take care of distributed/parallel training
|
|
model_to_save.save_pretrained(args.output_dir)
|
|
tokenizer.save_pretrained(args.output_dir)
|
|
|
|
# Good practice: save your training arguments together with the trained model
|
|
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
|
|
|
|
# Load a trained model and vocabulary that you have fine-tuned
|
|
model = AutoModelForCausalLM.from_pretrained(args.output_dir)
|
|
tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
|
|
model.to(args.device)
|
|
|
|
main(trn_df, val_df)
|