18 lines
548 B
Python
18 lines
548 B
Python
|
import torch
|
||
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||
|
|
||
|
device = torch.device("cuda")
|
||
|
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
|
||
|
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B").cuda()
|
||
|
|
||
|
run = True
|
||
|
while run:
|
||
|
input_text = input('>> ')
|
||
|
if input_text in 'q':
|
||
|
run = False
|
||
|
break
|
||
|
input_ids = tokenizer.encode(input_text, return_tensors="pt").to("cuda")
|
||
|
|
||
|
outputs = model.generate(input_ids)
|
||
|
print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
|