wake up, eric
This commit is contained in:
parent
faa542aca4
commit
faafd258a3
4 changed files with 64 additions and 26 deletions
|
@ -3,31 +3,34 @@ import json
|
||||||
|
|
||||||
url = 'https://doordesk.net/chat'
|
url = 'https://doordesk.net/chat'
|
||||||
|
|
||||||
def cartman_speak(user_message):
|
def cartman_respond(user_message):
|
||||||
message = {'Message': user_message}
|
message = {'Message': user_message}
|
||||||
response = requests.post(url,json.dumps(message))
|
response = requests.post(url,json.dumps(message))
|
||||||
return response.json().get('Cartman')
|
return response.json().get('Cartman')
|
||||||
|
|
||||||
|
from transformers.models.auto.modeling_auto import AutoModelForCausalLM
|
||||||
|
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
|
||||||
|
model = AutoModelForCausalLM.from_pretrained("../chatbots/southpark/cartman/models/output-medium")
|
||||||
|
|
||||||
|
def cartman_speak(input_text):
|
||||||
|
input_ids = tokenizer(input_text + tokenizer.eos_token, return_tensors="pt").input_ids
|
||||||
|
outputs = model.generate(
|
||||||
|
input_ids,
|
||||||
|
pad_token_id=tokenizer.eos_token_id,
|
||||||
|
max_new_tokens = 200,
|
||||||
|
num_beams = 8,
|
||||||
|
num_beam_groups = 4,
|
||||||
|
no_repeat_ngram_size=3,
|
||||||
|
length_penalty = 1.4,
|
||||||
|
diversity_penalty = 0,
|
||||||
|
repetition_penalty = 2.1,
|
||||||
|
early_stopping = True,
|
||||||
|
|
||||||
# from transformers.models.auto.tokenization_auto import AutoTokenizer
|
|
||||||
# from transformers.models.auto.modeling_auto import AutoModelForCausalLM
|
|
||||||
# import torch
|
|
||||||
#
|
|
||||||
# tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-large')
|
|
||||||
# model = AutoModelForCausalLM.from_pretrained('../southpark/output-medium')
|
|
||||||
#
|
|
||||||
# def cartman_speak(user_message):
|
|
||||||
# new_user_input_ids = tokenizer.encode(user_message + tokenizer.eos_token, return_tensors='pt')
|
|
||||||
# bot_output = new_user_input_ids
|
|
||||||
# bot_input_ids = torch.cat([new_user_input_ids, bot_output])
|
|
||||||
# bot_output = model.generate(
|
|
||||||
# bot_input_ids, max_length= 200,
|
|
||||||
# pad_token_id=tokenizer.eos_token_id,
|
|
||||||
# no_repeat_ngram_size=3,
|
|
||||||
# do_sample = True,
|
# do_sample = True,
|
||||||
# top_k = 100,
|
# top_k = 100,
|
||||||
# top_p = 0.7,
|
# top_p = 0.7,
|
||||||
# temperature=.8
|
# temperature = 0.8,
|
||||||
# )
|
)
|
||||||
#
|
return tokenizer.decode(outputs[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
||||||
# return '{}'.format(tokenizer.decode(bot_output[:,bot_input_ids.shape[-1]:][0], skip_special_tokens=True))
|
|
||||||
|
|
|
@ -4,7 +4,7 @@ from transformers.models.t5.modeling_t5 import T5ForConditionalGeneration
|
||||||
|
|
||||||
device = torch.device("cuda")
|
device = torch.device("cuda")
|
||||||
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-xl")
|
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-xl")
|
||||||
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xxl").cuda()
|
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xl").cuda()
|
||||||
|
|
||||||
run = True
|
run = True
|
||||||
while run:
|
while run:
|
||||||
|
@ -12,7 +12,7 @@ while run:
|
||||||
if input_text in 'q':
|
if input_text in 'q':
|
||||||
run = False
|
run = False
|
||||||
break
|
break
|
||||||
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
input_ids = tokenizer.encode(input_text, return_tensors="pt").to("cuda")
|
||||||
|
|
||||||
outputs = model.generate(input_ids)
|
outputs = model.generate(input_ids)
|
||||||
print(tokenizer.decode(outputs[0]))
|
print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
|
||||||
|
|
18
test/gpt-jt_test.py
Normal file
18
test/gpt-jt_test.py
Normal file
|
@ -0,0 +1,18 @@
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||||
|
|
||||||
|
device = torch.device("cuda")
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/GPT-JT-6B-v1")
|
||||||
|
model = AutoModelForCausalLM.from_pretrained("togethercomputer/GPT-JT-6B-v1").cuda()
|
||||||
|
|
||||||
|
run = True
|
||||||
|
while run:
|
||||||
|
input_text = input('>> ')
|
||||||
|
if input_text in 'q':
|
||||||
|
run = False
|
||||||
|
break
|
||||||
|
input_ids = tokenizer.encode(input_text, return_tensors="pt").to("cuda")
|
||||||
|
|
||||||
|
outputs = model.generate(input_ids)
|
||||||
|
print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
|
17
test/gptjtest.py
Normal file
17
test/gptjtest.py
Normal file
|
@ -0,0 +1,17 @@
|
||||||
|
import torch
|
||||||
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||||
|
|
||||||
|
device = torch.device("cuda")
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
|
||||||
|
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B").cuda()
|
||||||
|
|
||||||
|
run = True
|
||||||
|
while run:
|
||||||
|
input_text = input('>> ')
|
||||||
|
if input_text in 'q':
|
||||||
|
run = False
|
||||||
|
break
|
||||||
|
input_ids = tokenizer.encode(input_text, return_tensors="pt").to("cuda")
|
||||||
|
|
||||||
|
outputs = model.generate(input_ids)
|
||||||
|
print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
|
Loading…
Add table
Reference in a new issue