diff --git a/clean.ipynb b/clean.ipynb index b1aeae8..b3e315c 100644 --- a/clean.ipynb +++ b/clean.ipynb @@ -13,7 +13,9 @@ "id": "cecbac86-abb3-4f6b-a101-2d9324d96274", "metadata": {}, "source": [ - "# Cleaning" + "# Cleaning\n", + "\n", + "Let's get this to something we can work with" ] }, { @@ -30,17 +32,19 @@ "id": "3c4bfade-d06d-4887-9eb4-ec7f5bc61625", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:36.887038Z", - "iopub.status.busy": "2022-07-21T20:29:36.886672Z", - "iopub.status.idle": "2022-07-21T20:29:37.222976Z", - "shell.execute_reply": "2022-07-21T20:29:37.222218Z", - "shell.execute_reply.started": "2022-07-21T20:29:36.886962Z" + "iopub.execute_input": "2022-08-01T00:18:59.316785Z", + "iopub.status.busy": "2022-08-01T00:18:59.315438Z", + "iopub.status.idle": "2022-08-01T00:19:00.307894Z", + "shell.execute_reply": "2022-08-01T00:19:00.307130Z", + "shell.execute_reply.started": "2022-08-01T00:18:59.316695Z" }, "tags": [] }, "outputs": [], "source": [ "import pandas as pd\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", "\n", "df = pd.read_csv('data/auto-mpg.data',header=None,delim_whitespace=True)\n", "df.columns = ['mpg','cylinders','displacement','horsepower','weight',\n", @@ -71,11 +75,11 @@ "id": "62bbb6bd-b5b3-4d54-a132-23cd367c4570", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:37.225459Z", - "iopub.status.busy": "2022-07-21T20:29:37.224901Z", - "iopub.status.idle": "2022-07-21T20:29:37.237624Z", - "shell.execute_reply": "2022-07-21T20:29:37.236773Z", - "shell.execute_reply.started": "2022-07-21T20:29:37.225432Z" + "iopub.execute_input": "2022-08-01T00:19:00.311568Z", + "iopub.status.busy": "2022-08-01T00:19:00.310921Z", + "iopub.status.idle": "2022-08-01T00:19:00.322308Z", + "shell.execute_reply": "2022-08-01T00:19:00.321851Z", + "shell.execute_reply.started": "2022-08-01T00:19:00.311524Z" }, "tags": [] }, @@ -112,7 +116,7 @@ "id": "6a4028ed-eda3-4c50-aed0-d9503d41a8e1", "metadata": {}, "source": [ - "Why is horsepower not a number?" + "No nulls, but why is horsepower not a number?" ] }, { @@ -121,11 +125,11 @@ "id": "58fa2876-4ccb-4ef5-bc16-d25b74efb457", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:37.239126Z", - "iopub.status.busy": "2022-07-21T20:29:37.238760Z", - "iopub.status.idle": "2022-07-21T20:29:37.252035Z", - "shell.execute_reply": "2022-07-21T20:29:37.251217Z", - "shell.execute_reply.started": "2022-07-21T20:29:37.239098Z" + "iopub.execute_input": "2022-08-01T00:19:00.323107Z", + "iopub.status.busy": "2022-08-01T00:19:00.322921Z", + "iopub.status.idle": "2022-08-01T00:19:00.333299Z", + "shell.execute_reply": "2022-08-01T00:19:00.332860Z", + "shell.execute_reply.started": "2022-08-01T00:19:00.323092Z" }, "tags": [] }, @@ -164,11 +168,11 @@ "id": "2d99ea58-ca51-4461-a127-c6b389b056a1", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:37.253416Z", - "iopub.status.busy": "2022-07-21T20:29:37.253082Z", - "iopub.status.idle": "2022-07-21T20:29:37.271785Z", - "shell.execute_reply": "2022-07-21T20:29:37.271054Z", - "shell.execute_reply.started": "2022-07-21T20:29:37.253389Z" + "iopub.execute_input": "2022-08-01T00:19:00.334093Z", + "iopub.status.busy": "2022-08-01T00:19:00.333926Z", + "iopub.status.idle": "2022-08-01T00:19:00.347963Z", + "shell.execute_reply": "2022-08-01T00:19:00.347305Z", + "shell.execute_reply.started": "2022-08-01T00:19:00.334077Z" }, "tags": [] }, @@ -314,7 +318,7 @@ "id": "498d069d-b95e-43d6-bd3d-4b707fdd9635", "metadata": {}, "source": [ - "I'll fill in what I can find online" + "I'll fill in what I can with what I can find online" ] }, { @@ -323,11 +327,11 @@ "id": "e53a2eaf-a8f9-4d7e-bf8b-07a125cf6f06", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:37.273324Z", - "iopub.status.busy": "2022-07-21T20:29:37.272853Z", - "iopub.status.idle": "2022-07-21T20:29:37.278574Z", - "shell.execute_reply": "2022-07-21T20:29:37.277496Z", - "shell.execute_reply.started": "2022-07-21T20:29:37.273297Z" + "iopub.execute_input": "2022-08-01T00:19:00.348907Z", + "iopub.status.busy": "2022-08-01T00:19:00.348680Z", + "iopub.status.idle": "2022-08-01T00:19:00.352582Z", + "shell.execute_reply": "2022-08-01T00:19:00.351931Z", + "shell.execute_reply.started": "2022-08-01T00:19:00.348891Z" }, "tags": [] }, @@ -363,11 +367,11 @@ "id": "10400330-e6aa-43e0-910f-f97869c23d0f", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:37.280095Z", - "iopub.status.busy": "2022-07-21T20:29:37.279777Z", - "iopub.status.idle": "2022-07-21T20:29:37.286985Z", - "shell.execute_reply": "2022-07-21T20:29:37.286202Z", - "shell.execute_reply.started": "2022-07-21T20:29:37.280060Z" + "iopub.execute_input": "2022-08-01T00:19:00.353597Z", + "iopub.status.busy": "2022-08-01T00:19:00.353430Z", + "iopub.status.idle": "2022-08-01T00:19:00.360958Z", + "shell.execute_reply": "2022-08-01T00:19:00.359990Z", + "shell.execute_reply.started": "2022-08-01T00:19:00.353582Z" }, "tags": [] }, @@ -392,11 +396,11 @@ "id": "e0fd9a7b-6cdf-4346-8c8d-6c5f36e167f6", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:37.289881Z", - "iopub.status.busy": "2022-07-21T20:29:37.289472Z", - "iopub.status.idle": "2022-07-21T20:29:37.301335Z", - "shell.execute_reply": "2022-07-21T20:29:37.300537Z", - "shell.execute_reply.started": "2022-07-21T20:29:37.289852Z" + "iopub.execute_input": "2022-08-01T00:19:00.365129Z", + "iopub.status.busy": "2022-08-01T00:19:00.364725Z", + "iopub.status.idle": "2022-08-01T00:19:00.373554Z", + "shell.execute_reply": "2022-08-01T00:19:00.372817Z", + "shell.execute_reply.started": "2022-08-01T00:19:00.365100Z" }, "tags": [] }, @@ -450,11 +454,11 @@ "id": "769f33e7-2f2e-46e8-b6dd-8f8fb79d13b7", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:37.303380Z", - "iopub.status.busy": "2022-07-21T20:29:37.302680Z", - "iopub.status.idle": "2022-07-21T20:29:37.310508Z", - "shell.execute_reply": "2022-07-21T20:29:37.309738Z", - "shell.execute_reply.started": "2022-07-21T20:29:37.303336Z" + "iopub.execute_input": "2022-08-01T00:19:00.374606Z", + "iopub.status.busy": "2022-08-01T00:19:00.374357Z", + "iopub.status.idle": "2022-08-01T00:19:00.379646Z", + "shell.execute_reply": "2022-08-01T00:19:00.379055Z", + "shell.execute_reply.started": "2022-08-01T00:19:00.374591Z" }, "tags": [] }, @@ -520,11 +524,11 @@ "id": "7bac1a71-53d2-4081-b566-244bccd3a3c6", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:37.312020Z", - "iopub.status.busy": "2022-07-21T20:29:37.311631Z", - "iopub.status.idle": "2022-07-21T20:29:37.319881Z", - "shell.execute_reply": "2022-07-21T20:29:37.318953Z", - "shell.execute_reply.started": "2022-07-21T20:29:37.311992Z" + "iopub.execute_input": "2022-08-01T00:19:00.380599Z", + "iopub.status.busy": "2022-08-01T00:19:00.380414Z", + "iopub.status.idle": "2022-08-01T00:19:00.387779Z", + "shell.execute_reply": "2022-08-01T00:19:00.387145Z", + "shell.execute_reply.started": "2022-08-01T00:19:00.380583Z" }, "tags": [] }, @@ -575,11 +579,11 @@ "id": "87715776-3634-4ca7-bbb4-e04633fe4791", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:37.321678Z", - "iopub.status.busy": "2022-07-21T20:29:37.321045Z", - "iopub.status.idle": "2022-07-21T20:29:37.354573Z", - "shell.execute_reply": "2022-07-21T20:29:37.353866Z", - "shell.execute_reply.started": "2022-07-21T20:29:37.321651Z" + "iopub.execute_input": "2022-08-01T00:19:00.389256Z", + "iopub.status.busy": "2022-08-01T00:19:00.388803Z", + "iopub.status.idle": "2022-08-01T00:19:00.417680Z", + "shell.execute_reply": "2022-08-01T00:19:00.417117Z", + "shell.execute_reply.started": "2022-08-01T00:19:00.389227Z" }, "tags": [] }, @@ -747,6 +751,489 @@ "Everything looks proportional" ] }, + { + "cell_type": "code", + "execution_count": 11, + "id": "3f68b5d6-15c7-4fe0-aa49-a04ab90c4efa", + "metadata": { + "execution": { + "iopub.execute_input": "2022-08-01T00:19:00.418521Z", + "iopub.status.busy": "2022-08-01T00:19:00.418342Z", + "iopub.status.idle": "2022-08-01T00:19:00.645493Z", + "shell.execute_reply": "2022-08-01T00:19:00.644587Z", + "shell.execute_reply.started": "2022-08-01T00:19:00.418505Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFwCAYAAACGt6HXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXzElEQVR4nO3dfbRddX3n8fcnCYgVVCiBhpCIDyxHllOwKzoanPqAzsSHCl2jRKs2dWiDy+poZergQ6c6bWcY2zp22qklRSSitSDqgOjQYpSqCxcYBQoMVFyIISQmAUUBHTTkO3+cHb0rvffmJJx9fyf3vF9rnXX2429/7865n/zu75y9T6oKSdLcW9C6AEmaVAawJDViAEtSIwawJDViAEtSIwawJDViAOthS/JXSX5vRG0tT3J/koXd/FVJfnMUbXft/Z8ka0bV3j4c9w+T3J3kO3N9bI0vA1izSnJHkh8luS/JvUmuTvL6JD997VTV66vqD4Zs6wWzbVNVm6rq0Kp6aAS1vzvJR/Zo/0VVtf7htr2PdSwDzgJOqKpfmGb9c5NUkk/usfzEbvlVU5ZVkge6/6TuSvK+3f9ZdetfmeSabpvt3fQbkqTHH1H7yQDWMH6lqg4DHgecA/wn4IOjPkiSRaNuc0w8DrinqrbPss0OYGWSn5+ybA3wjWm2PbGqDgVOAX4N+C2AJGcBfwb8MfALwNHA64GTgYMf7g+h0TOANbSq+n5VXQasBtYkeSpAkguS/GE3fWSSy7ve8neTfCnJgiQXAsuBT3e9t7clOa7r0Z2RZBPw+SnLpobxE5Ncm+T7SS5NckR3rOcm2Ty1xt297CSrgHcAq7vj3dCt/+mQRlfXu5J8u+stfjjJY7p1u+tYk2RTN3zwzpnOTZLHdPvv6Np7V9f+C4ArgWO6Oi6YoYkfA/8beGXX3kLgdOCjs/x73Ap8CXhqV/d/Ad5QVZdU1X01cF1VvbqqHpypHbVjAGufVdW1wGbgX0+z+qxu3WIGPbB3DHap1wKbGPSmD62q907Z5znAU4B/O8Mhfx3498AxwE7gfw5R4xXAfwUu6o534jSb/Ub3eB7wBOBQ4C/22ObZwJMZ9Db/c5KnzHDIPwce07XznK7m11XV54AXAVu6On5jlrI/3O0Hg3NxM7Blpo2TnMDg3+A64FnAI4BLZ2lfY8YA1v7aAhwxzfKfAEuAx1XVT6rqS7X3G468u6oeqKofzbD+wqq6qaoeAH4POH3quOfD8GrgfVV1e1XdD7wdeOUeve/3VNWPquoG4AbgnwV5V8tq4O1dz/MO4E+B1+5LMVV1NXBEkiczCOIPz7Dp15N8D/g0cB7wIeBI4O6q2jmlrqu7v0R+lOSX96UWzQ0DWPtrKfDdaZb/MfBN4O+T3J7k7CHaunMf1n8bOIhB4Dxcx3TtTW17EYOe+25TP7XwQwa95D0dyWCMdc+2lu5HTRcCb2TQK//UDNv8UlUdXlVPrKp3VdUu4B7gyKn/eVTVyqp6bLfO3/Ux5D+K9lmSpzMIly/vua7rAZ5VVU8AfgV4a5JTdq+eocm99ZCXTZlezqCXfTfwAPBzU+payGDoY9h2tzB4g2xq2zuBbXvZb093dzXt2dZd+9gODAL4DcBnq+qH+7DfV4AHgVP345hqxADW0JI8OslLgb8FPlJVN06zzUuTPKn72NMPgIe6BwyC7Qn7cejXJDkhyc8xeKPpku5jat8ADknykiQHAe9iMA662zbguKkfmdvDx4DfSfL4JIfyszHjnTNsP62ulouBP0pyWJLHAW8FPjL7ntO29S0GY8gzvuE3w373Au8B/jLJy5Mc2r0JeBLwqH2tQ3PDANYwPp3kPgZDAe8E3ge8boZtjwc+B9zPoFf2l1V1VbfuvwHv6sYl/+M+HP9C4AIGwwGHAP8BBp/KYNBbPI9Bb/MBBm8A7vbx7vmeJF+fpt3zu7a/CHwL+H/Am/ahrqne1B3/dgZ/GfxN1/4+q6ovV9WMb77Nst97GQT/24DtDP4DOpfBxwav3p9a1K94Q3ZJasMesCQ1YgBLUiMGsCQ1YgBLUiMHxM1PVq1aVVdccUXrMiRpf017N7oDogd89913ty5BkkbugAhgSZqPDGBJasQAlqRGDGBJasQAlqRGDGBJasQAlqRGDGBJasQAlqRGDGBJasQAlqRGDGBJasQAlqRGDOB5bOmy5SQZ6WPpsuWtfyxp3jgg7ges/bNl852sPne0X4Z70ZkrR9qeNMnsAUtSIwawJDViAEtSIwawJDXSawAneWySS5LcmuSWJM9KckSSK5Pc1j0f3mcNkjSu+u4B/xlwRVX9C+BE4BbgbGBDVR0PbOjmJWni9BbASR4N/DLwQYCq+nFV3QucCqzvNlsPnNZXDZI0zvrsAT8B2AF8KMl1Sc5L8ijg6KraCtA9HzXdzknWJtmYZOOOHTt6LFOS2ugzgBcBvwR8oKqeBjzAPgw3VNW6qlpRVSsWL17cV42S1EyfAbwZ2FxV13TzlzAI5G1JlgB0z9t7rEGSxlZvAVxV3wHuTPLkbtEpwP8FLgPWdMvWAJf2VYMkjbO+7wXxJuCjSQ4GbgdexyD0L05yBrAJeEXPNUjSWOo1gKvqemDFNKtO6fO4knQg8Eo4SWrEAJakRgxgSWrEAJakRgxgSWrEAJakRgxgSWrEAJakRgxgSWrEAJakRgxgSWrEAJakRgxgSWrEAJakRgxgSWrEAJakRgxgSWrEAJakRgxgSWrEAJakRgxgSWrEAJakRgxgSWrEAJakRgxgSWrEAJakRgxgSWrEAJakRgzgMbB02XKSjPwhabwtal2AYMvmO1l97tUjb/eiM1eOvE1Jo2MPWJIaMYAlqREDWJIaMYAlqREDWJIaMYAlqREDWJIaMYDVXF8Xoixdtrz1jybNygsx1JwXomhS9RrASe4A7gMeAnZW1YokRwAXAccBdwCnV9X3+qxDksbRXAxBPK+qTqqqFd382cCGqjoe2NDNS9LEaTEGfCqwvpteD5zWoAZJaq7vAC7g75N8LcnabtnRVbUVoHs+arodk6xNsjHJxh07dvRcpiTNvb7fhDu5qrYkOQq4Msmtw+5YVeuAdQArVqyovgqUpFZ67QFX1ZbueTvwKeAZwLYkSwC65+191iBJ46q3AE7yqCSH7Z4G/g1wE3AZsKbbbA1waV81SNI463MI4mjgU903MywC/qaqrkjyVeDiJGcAm4BX9FiDJI2t3gK4qm4HTpxm+T3AKX0dV5IOFF6KLEmNGMCS1IgBLEmNGMCS1IgBLEmNGMCS1IgBLEmNGMCS1IgBLEmNGMCS1IgBLEmNGMCS1IgBLEmNGMD7aOmy5SQZ6UPSZOr7K4nmnS2b72T1uVePtM2Lzlw50vYkHRjsAUtSIwawJDViAEtSIwawJDViAEtSIwawJDViAEtSIwawJDViAEtSIwawJDViAEtSIwawJDViAEtSIwawJDViAEtSIwawJDViAEtSIwawJDViAEtSIwawJDViAEtSIwaw5q8Fi0gy0sfSZctb/1SaR/xaes1fu3ay+tyrR9rkRWeuHGl7mmy994CTLExyXZLLu/kjklyZ5Lbu+fC+a5CkcTQXQxBvBm6ZMn82sKGqjgc2dPOSNHF6DeAkxwIvAc6bsvhUYH03vR44rc8aJGlc9T0G/H7gbcBhU5YdXVVbAapqa5KjptsxyVpgLcDy5b7xMTa6N7YkPXy9BXCSlwLbq+prSZ67r/tX1TpgHcCKFStqtNVpv/nGljQyffaATwZeluTFwCHAo5N8BNiWZEnX+10CbO+xBkkaW72NAVfV26vq2Ko6Dngl8Pmqeg1wGbCm22wNcGlfNUjSOGtxIcY5wAuT3Aa8sJuXpIkzJxdiVNVVwFXd9D3AKXNxXEkaZ16KLEmNGMCS1IgBLEmNGMCS1IgBLEmNGMCS1IgBLEmNGMCS1IgBLEmNGMCS1IgBLEmNGMCS1IgBLEmNGMDSvui+kmmUj6XL/MqtSTUnt6OU5g2/kkkjZA9YkhoxgCWpkaECOMnJwyyTJA1v2B7wnw+5TJI0pFnfhEvyLGAlsDjJW6esejSwsM/CJGm+29unIA4GDu22O2zK8h8AL++rKEmaBLMGcFX9A/APSS6oqm/PUU2SNBGG/RzwI5KsA46buk9VPb+PoiRpEgwbwB8H/go4D3iov3IkaXIMG8A7q+oDvVYiSRNm2I+hfTrJG5IsSXLE7kevlUnSPDdsD3hN9/y7U5YV8ITRliNJk2OoAK6qx/ddiCRNmqECOMmvT7e8qj482nIkaXIMOwTx9CnThwCnAF8HDGBJ2k/DDkG8aep8kscAF/ZSkSRNiP29HeUPgeNHWYgkTZphx4A/zeBTDzC4Cc9TgIv7KkqSJsGwY8B/MmV6J/DtqtrcQz2SNDGGGoLobspzK4M7oh0O/LjPoiRpEgz7jRinA9cCrwBOB65J4u0oJelhGHYI4p3A06tqO0CSxcDngEv6KkyS5rthPwWxYHf4du7Zh30lSdMYtgd8RZK/Az7Wza8GPjvbDkkOAb4IPKI7ziVV9fvdTXwuYnBv4TuA06vqe/teuiQd2GbtxSZ5UpKTq+p3gXOBXwROBL4CrNtL2w8Cz6+qE4GTgFVJngmcDWyoquOBDd28JE2cvQ0jvB+4D6CqPllVb62q32HQ+33/bDvWwP3d7EHdo4BTgfXd8vXAaftTuCQd6PYWwMdV1T/uubCqNjIYQphVkoVJrge2A1dW1TXA0VW1tWtnK3DUDPuuTbIxycYdO3bs7VCSdMDZWwAfMsu6R+6t8ap6qKpOAo4FnpHkqcMWVlXrqmpFVa1YvHjxsLtJ0gFjbwH81SS/tefCJGcAXxv2IFV1L3AVsArYlmRJ184SBr1jSZo4e/sUxFuATyV5NT8L3BXAwcCvzrZj91nhn1TVvUkeCbwA+O/AZQy+YeOc7vnS/a5ekg5gswZwVW0DViZ5HrB7+OAzVfX5IdpeAqxPspBBT/viqro8yVeAi7te9CYGV9dJ0sQZ9n7AXwC+sC8Nd2/ePW2a5fcwuKG7JE00r2aTpEYMYElqxACWpEYMYElqxACWpEYMYElqxACWpEYMYElqxACWWluwiCQjfyxdtrz1T6a9GPYbMST1ZddOVp979cibvejMlSNvU6NlD1iSGjGAJakRA1iSGjGAJakRA1iSGjGAJakRA1iSGjGAJakRA1iSGjGAJakRA1iSGjGAJakRA1iSGjGAJakRA1iSGjGAJakRA1iSGjGAJakRA1iSGjGAJakRA1iSGjGAJakRA1iSGjGAJakRA1iSGjGAJakRA1iSGjGAJamR3gI4ybIkX0hyS5Kbk7y5W35EkiuT3NY9H95XDZI0zvrsAe8EzqqqpwDPBH47yQnA2cCGqjoe2NDNS9LE6S2Aq2prVX29m74PuAVYCpwKrO82Ww+c1lcNkjTO5mQMOMlxwNOAa4Cjq2orDEIaOGqGfdYm2Zhk444dO+aiTEmaU70HcJJDgU8Ab6mqHwy7X1Wtq6oVVbVi8eLF/RUoSY30GsBJDmIQvh+tqk92i7clWdKtXwJs77MGSRpXfX4KIsAHgVuq6n1TVl0GrOmm1wCX9lWDJI2zRT22fTLwWuDGJNd3y94BnANcnOQMYBPwih5rkKSx1VsAV9WXgcyw+pS+jitJBwqvhJOkRgxgSWrEAJakRgxgSWrEAJakRgxgSWrEAJakRgxgSWrEAJakRgxgab5asIgkI30sXba89U81r/R5LwhJLe3ayepzrx5pkxeduXKk7U06e8CS1IgBLEmNGMCS1IgBLEmNGMCS1IgBLEmNGMCS1IgBLEmNGMCS1IgBLEmNGMCS1IgBLEmNGMCS1IgBLEmNGMCS1IgBLEmNGMCS1IgBLEmNGMCS1IgBLEmNGMCS1IgBLEmNGMCS1IgBLEmNGMCS1IgBLEmNGMCS1EhvAZzk/CTbk9w0ZdkRSa5Mclv3fHhfx5ekcddnD/gCYNUey84GNlTV8cCGbl6SJlJvAVxVXwS+u8fiU4H13fR64LS+ji9J426ux4CPrqqtAN3zUXN8fEkaG2P7JlyStUk2Jtm4Y8eO1uVI0sjNdQBvS7IEoHvePtOGVbWuqlZU1YrFixfPWYGSNFfmOoAvA9Z002uAS+f4+JI0Nvr8GNrHgK8AT06yOckZwDnAC5PcBrywm5ekibSor4ar6lUzrDqlr2NK6tmCRSQZaZPHHLuMu+7cNNI2DxS9BbCkeWjXTlafe/VIm7zozJUjbe9AMrafgpCk+c4AlqRGDGBJasQAlqRGDGBJasQAlqRGDGBJasQAlqRG5nUAL122nCQjfUjSqMzrK+G2bL7Tq3Ykja153QOWpHFmAEtSIwawJDViAEtSIwawJDViAEtSIwawJDViAEtSIwawJDViAEtSIwawJDViAEtSI/P6ZjySDgALFo38ToMLD3oED/3kwZG2CXDMscu4685NI2vPAJbU1q6dvdy1cNRt7m53lByCkKRGDGBJasQAlqRGDGBJasQAlqRGDGBJasQAlqRGDGBJasQAlqRGDGBJasQAlqRGDGBJasQAlqRGDGBJaqRJACdZleSfknwzydktapCk1uY8gJMsBP4X8CLgBOBVSU6Y6zokqbUWPeBnAN+sqtur6sfA3wKnNqhDkppKVc3tAZOXA6uq6je7+dcC/6qq3rjHdmuBtd3sk4F/GnEpRwJ3j7jNh8uahjNuNY1bPWBNw5qrmu6uqlV7LmzxlUTTffnTP/tfoKrWAet6KyLZWFUr+mp/f1jTcMatpnGrB6xpWK1rajEEsRlYNmX+WGBLgzokqakWAfxV4Pgkj09yMPBK4LIGdUhSU3M+BFFVO5O8Efg7YCFwflXdPNd10OPwxsNgTcMZt5rGrR6wpmE1rWnO34STJA14JZwkNWIAS1IjExHASc5Psj3JTVOWHZHkyiS3dc+Hj0FN705yV5Lru8eL57CeZUm+kOSWJDcneXO3vNl5mqWmlufpkCTXJrmhq+k93fKW52mmmpqdp+74C5Ncl+Tybr7p79wMNTU9RxMRwMAFwJ4fgj4b2FBVxwMbuvnWNQH8j6o6qXt8dg7r2QmcVVVPAZ4J/HZ3iXjL8zRTTdDuPD0IPL+qTgROAlYleSZtz9NMNUG78wTwZuCWKfOtf+emqwkanqOJCOCq+iLw3T0Wnwqs76bXA6eNQU3NVNXWqvp6N30fgxfpUhqep1lqaqYG7u9mD+oeRdvzNFNNzSQ5FngJcN6UxU1/52aoqamJCOAZHF1VW2Hwiw4c1bie3d6Y5B+7IYo5/xMNIMlxwNOAaxiT87RHTdDwPHV/xl4PbAeurKrm52mGmqDdeXo/8DZg15RlrV9L09UEDV9LkxzA4+gDwBMZ/Bm5FfjTuS4gyaHAJ4C3VNUP5vr405mmpqbnqaoeqqqTGFzF+YwkT53L409nhpqanKckLwW2V9XX5uJ4w5ilpqavpUkO4G1JlgB0z9sb10NVbet+kXYBf83gznFzJslBDILuo1X1yW5x0/M0XU2tz9NuVXUvcBWDsfyxeD1NranheToZeFmSOxjc7fD5ST5C23M0bU2tX0uTHMCXAWu66TXApQ1rAX76otztV4GbZtq2h2MH+CBwS1W9b8qqZudpppoan6fFSR7bTT8SeAFwK23P07Q1tTpPVfX2qjq2qo5jcKuBz1fVa2h4jmaqqeVrCdrcDW3OJfkY8FzgyCSbgd8HzgEuTnIGsAl4xRjU9NwkJzF4A+UO4Mw5LOlk4LXAjd1YIsA7aHueZqrpVQ3P0xJgfQZfLLAAuLiqLk/yFdqdp5lqurDheZpO09+5Gby35TnyUmRJamSShyAkqSkDWJIaMYAlqREDWJIaMYAlqREDWJIaMYAlqZGJuBBDk6m7gc8VwJcZ3M7yBuBDwHsY3Ajm1cCLGdwLYCmDb+t+b1X9dZIFwF8AzwG+xaCzcn5VXTLHP4bmMQNY892TGFxxtZbBN3L/GvBs4GUMrqq7HvhFBgH9KOC6JJ8BVgLHAf+SQVjfApw/t6VrvnMIQvPdt6rqxu5mKzczuCF4ATcyCFiAS6vqR1V1N/AFBjdkeTbw8araVVXf6ZZLI2UAa757cMr0rinzu/jZX4B7Xo9fQHquSzKAJeDU7nvVfp7BDZK+ymDc+N8lWZDk6G65NFKOAUtwLfAZYDnwB1W1JckngFMY3J7wGwy+ieP77UrUfOTd0DTRkrwbuL+q/mSadYdW1f1dz/ha4ORuPFgaCXvA0swu7250fjCDnrHhq5GyByxJjfgmnCQ1YgBLUiMGsCQ1YgBLUiMGsCQ18v8B2GscPdYCaSkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.displot(x=df.mpg)\n", + "plt.title('Distribution of MPG')\n", + "plt.show();" + ] + }, + { + "cell_type": "markdown", + "id": "506e5033-b3da-4624-bbc5-44f3d159d9e1", + "metadata": {}, + "source": [ + "Most MPG is around 20" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "4c705ec7-9106-4f3c-a65b-5081fe1ded59", + "metadata": { + "execution": { + "iopub.execute_input": "2022-08-01T00:19:00.647104Z", + "iopub.status.busy": "2022-08-01T00:19:00.646709Z", + "iopub.status.idle": "2022-08-01T00:19:00.732581Z", + "shell.execute_reply": "2022-08-01T00:19:00.732044Z", + "shell.execute_reply.started": "2022-08-01T00:19:00.647075Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAHFCAYAAACXYgGUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAeF0lEQVR4nO3de5TU5X348c9w2YsIG7kuCCJq1HgjEbQBPBFEbAiHRD0aDRKXENNKhKK2aWtyEs3FYG0kNccYzcULTdDmopZK1mrCxRpMhCiFpKmpOQjmAMGz0bCAS2F5fn/4Y8rysLDC4uwOr9c5c87ud2a+8zz7sDtvvt+Z3UJKKQUAwB66lHoAAEDHIxAAgIxAAAAyAgEAyAgEACAjEACAjEAAADICAQDICAQAICMQYD8eeOCBKBQKLS79+vWLsWPHxuOPP17q4RUdf/zxMW3atLd8v23btsUtt9wSS5YsafcxvfzyyzFp0qTo3bt3FAqFuP7661u97fHHHx+FQiHGjh27z+vnzZtX/PrvOdZbbrmlxdpUVFTEsGHDYvbs2fH6669n+1m1alV8/OMfjxNPPDGqq6ujuro63vnOd8Zf/uVfxooVKw5twlBmupV6ANAZ3H///XHqqadGSik2btwYd911V0yePDkWLFgQkydPLvXwDtq2bdvi85//fEREq0/OB+uGG26IX/ziF3HfffdFbW1tDBw4cL+379mzZzz99NPxu9/9Lk488cQW1913333Rq1ev2Lx58z7v+8QTT0RNTU00NjbGj3/847jzzjvjueeei2XLlkWhUIiIiHvvvTdmzpwZp5xySsyePTtOP/30KBQK8Zvf/CYeeuihOOecc+Kll17KHhuOVAIB2uCMM86IkSNHFj9///vfH8ccc0w89NBDnToQDqdf/epXce6558bFF1/cptufd955sXr16rjvvvvi1ltvLW7/3e9+F08//XRcc8018a1vfWuf9x0xYkT07ds3IiImTJgQDQ0N8c///M+xbNmyGDNmTPzsZz+LT37ykzFp0qT44Q9/GBUVFcX7XnDBBXHdddfFD37wg6iurj74CUOZcYoBDkJVVVVUVFRE9+7dW2z/4x//GJ/85Cfj2GOPjYqKijjhhBPiM5/5TGzfvj0iIpqamuI973lPnHTSSfGnP/2peL+NGzdGbW1tjB07NpqbmyMiYtq0aXH00UfHr3/96xg/fnz06NEj+vXrFzNnzoxt27YdcIzr1q2LqVOnRv/+/aOysjLe9a53xR133BG7du2KiDdPAfTr1y8iIj7/+c8XD9Mf6FTFgfa7ZMmSKBQK8dJLL0V9fX1xvy+//PJ+99ulS5e4+uqr48EHHyzuK+LNowdDhgyJCy+88IBz3u29731vRESsXbs2IiK+/OUvR9euXePee+9tEQd7uvzyy2PQoEFtfgwodwIB2qC5uTl27twZO3bsiN///vdx/fXXx9atW2PKlCnF2zQ1NcW4ceNi3rx5ceONN8bChQtj6tSpcfvtt8ell14aEW+Gxfe///3YtGlTTJ8+PSIidu3aFVdddVWklOKhhx6Krl27Fve5Y8eO+MAHPhDjx4+Pxx57LGbOnBn33ntvXHHFFfsd76uvvhqjR4+OJ598Mr74xS/GggUL4sILL4y/+Zu/iZkzZ0ZExMCBA+OJJ56IiIiPf/zj8eyzz8azzz4bn/3sZw9pv2effXY8++yzUVtbG2PGjCnu90CnGCIipk+fHuvXr49///d/L37dH3zwwZg2bVp06dL2H1cvvfRSRET069cvmpubY/HixTFy5Mg2jQH4/xLQqvvvvz9FRHaprKxMd999d4vb3nPPPSki0ve///0W2//hH/4hRUR68skni9v+5V/+JUVE+qd/+qf0uc99LnXp0qXF9SmlVFdXlyIi3XnnnS2233rrrSki0jPPPFPcNnTo0FRXV1f8/O///u9TRKRf/OIXLe47Y8aMVCgU0osvvphSSunVV19NEZFuvvnmNn092rrf3WOaNGlSm/a7523PP//8dNlll6WUUlq4cGEqFAppzZo16Qc/+EGKiLR48eLi/W6++eYUEWnjxo1px44d6bXXXkvf/e53U3V1dRoyZEh644030saNG1NEpCuvvDJ73J07d6YdO3YUL7t27WrTeOFI4AgCtMG8efNi+fLlsXz58qivr4+6urq47rrr4q677ireZtGiRdGjR4+47LLLWtx39yH7n/70p8VtH/7wh2PGjBnxqU99Kr70pS/Fpz/96ZgwYcI+H/uqq65q8fnuoxaLFy9udbyLFi2K0047Lc4999xsLCmlWLRo0YEn/Tbud0/Tp0+PBQsWRENDQ3znO9+JcePGxfHHH7/f+9TW1kb37t3jmGOOialTp8bZZ58dTzzxRFRVVe33fiNGjIju3bsXL3fcccchjx/KhRcpQhu8613vyl6kuHbt2vjbv/3bmDp1arzjHe+IhoaGqK2tLb5qfrf+/ftHt27doqGhocX26dOnxze+8Y2oqKiIv/qrv9rn43br1i369OnTYlttbW1ERLa/PTU0NOzzSXX3Ofb93Xd/Dtd+93TZZZfFrFmz4qtf/Wr827/9WzzwwAMHvM9PfvKTqKmpie7du8fgwYNbfM369u0b1dXVxdcj7Gn+/Pmxbdu22LBhQ3zwgx885LFDOXEEAQ7SWWedFW+88Ub89re/jYiIPn36xB/+8IdIKbW43aZNm2Lnzp3FV9lHRGzdujU++tGPxsknnxzV1dVxzTXX7PMxdu7cmT3pbty4sfh4renTp09s2LAh275+/fqIiBZjeSsO1373dNRRR8WVV14Zc+bMiR49ehRfv7E/w4cPj5EjR8bw4cOzr0vXrl3jggsuiBUrVmRjP+2002LkyJFx5plnHvK4odwIBDhIK1eujIgovhNg/PjxsWXLlnjsscda3G7evHnF63e79tprY926dfHII4/Ed77znViwYEF89atf3efjfO9732vx+fz58yNi/7+3YPz48fFf//Vf8fzzz2djKRQKMW7cuIiIqKysjIiIN954Yz8zfev7PVQzZsyIyZMnx+c+97kDniZoi5tuuimam5vj2muvjR07drTDCKH8OcUAbfCrX/0qdu7cGRFvHkZ/5JFH4qmnnopLLrkkhg0bFhERV199dXz961+Purq6ePnll+PMM8+MZ555Jr785S/HBz7wgeLb9L797W/Hd7/73bj//vvj9NNPj9NPPz1mzpwZf/d3fxdjxoxpcX6/oqIi7rjjjtiyZUucc845sWzZsvjSl74UEydOjPPOO6/V8d5www0xb968mDRpUnzhC1+IoUOHxsKFC+Puu++OGTNmxMknnxwRb/5yoqFDh8a//uu/xvjx46N3797Rt2/fVs/5t3W/h+rd7353FlqHYsyYMfH1r389Zs2aFWeffXb8xV/8RZx++unRpUuX2LBhQ/zoRz+KiIhevXq122NCp1fiF0lCh7avdzHU1NSkd7/73Wnu3Lmpqampxe0bGhrStddemwYOHJi6deuWhg4dmm666abi7VatWpWqq6tbvOMgpZSamprSiBEj0vHHH59ee+21lNKb72Lo0aNHWrVqVRo7dmyqrq5OvXv3TjNmzEhbtmxpcf+938WQUkpr165NU6ZMSX369Endu3dPp5xySvrHf/zH1Nzc3OJ2P/nJT9J73vOeVFlZmSIi28/e2rrfg30XQ2v29y6GV199tU2Ps3LlyvSxj30sDRs2LFVWVqaqqqp00kknpauvvjr99Kc/bdM+4EhRSGmvE6ZAhzBt2rT44Q9/GFu2bCn1UIAjkNcgAAAZgQAAZJxiAAAyjiAAABmBAABkBAIAkDnoX5S0a9euWL9+ffTs2TP73fMAQMeUUorGxsYYNGjQfv+M+kEHwvr162PIkCEHe3cAoIReeeWVGDx4cKvXH3Qg9OzZs/gAfj0pAHQOmzdvjiFDhhSfx1tz0IGw+7RCr169BAIAdDIHenmAFykCABmBAABkBAIAkBEIAEBGIAAAGYEAAGQEAgCQEQgAQEYgAAAZgQAAZAQCAJARCABARiAAABmBAABkBAIAkBEIAEBGIAAAGYEAAGQEAgCQEQgAQEYgAAAZgQAAZAQCAJARCABARiAAABmBAABkBAIAkBEIAEBGIAAAGYEAAGQEAgCQEQgAQKZbqQdAx5dSiqamplIPo+RSSrF9+/aIiKisrIxCoVDiEXVcVVVVvj7QyQkEDqipqSkmTpxY6mHQidTX10d1dXWphwEcAqcYAICMIwi8JVve/ZFIXY7QfzbNO6Lnfz4cERGNw6+M6Nq9xAPqWAq7dsbRKx8q9TCAdnKE/qTnYKUu3TwxRrz5NfB1aCGVegBAu3KKAQDICAQAICMQAICMQAAAMgIBAMgIBAAgIxAAgIxAAAAyAgEAyAgEACAjEACAjEAAADICAQDICAQAICMQAICMQAAAMgIBAMgIBAAgIxAAgIxAAAAyAgEAyAgEACAjEACAjEAAADICAQDICAQAICMQAICMQAAAMgIBAMgIBAAgIxAAgIxAAAAyAgEAyAgEACAjEACAjEAAADICAQDICAQAICMQAICMQAAAMgIBAMgIBAAgIxAAgIxAAAAyAgEAyAgEACAjEACAjEAAADICAQDICAQAICMQAICMQAAAMgIBAMgIBAAgIxAAgIxAAAAyAgEAyAgEACAjEACAjEAAADICAQDICAQAICMQAICMQAAAMgIBAMgIBAAgIxAAgIxAAAAyAgEAyHQr9QD2lFKKpqamiIioqqqKQqFQ4hEBQEtHynNVhzqC0NTUFBMnToyJEycWv/gA0JEcKc9VHSoQAICOQSAAABmBAABkBAIAkBEIAEBGIAAAGYEAAGQEAgCQEQgAQEYgAAAZgQAAZAQCAJARCABARiAAABmBAABkBAIAkBEIAEBGIAAAGYEAAGQEAgCQEQgAQEYgAAAZgQAAZAQCAJARCABARiAAABmBAABkBAIAkBEIAEBGIAAAGYEAAGQEAgCQEQgAQEYgAAAZgQAAZAQCAJARCABARiAAABmBAABkBAIAkBEIAEBGIAAAGYEAAGQEAgCQEQgAQEYgAAAZgQAAZAQCAJARCABARiAAABmBAABkBAIAkBEIAEBGIAAAGYEAAGQEAgCQEQgAQEYgAAAZgQAAZAQCAJARCABARiAAABmBAABkBAIAkBEIAEBGIAAAGYEAAGQEAgCQEQgAQEYgAEAHs2zZsrjiiiti2bJlJRuDQACADqSpqSnmzp0bf/jDH2Lu3LnR1NRUknEIBADoQL73ve9FQ0NDREQ0NDTE/PnzSzKObiV51FaklIofl6qYyLVYiz3WCFrw/csRYs9/36mdfyb+/ve/j/nz5xf3m1KK+fPnx0UXXRSDBw9u18c6kDYHwvbt22P79u3Fzzdv3tzug9lz/5dcckm77592sGtnRFSUehR0RLt2Fj/0/cuRYvv27XHUUUe1y75SSnHnnXe2uv3222+PQqHQLo/VFm0+xTBnzpyoqakpXoYMGXI4xwUAR5R169bF8uXLo7m5ucX25ubmWL58eaxbt+5tHU+bjyDcdNNNceONNxY/37x5c7tHQmVlZfHjRx99NKqqqtp1/xycpqam//sfYZcOdVaKjmSPfxu+fylne/5M3PN561Add9xxcc4558Tzzz/fIhK6du0aI0aMiOOOO67dHqst2vzTvrKysl2/EPuy56GTqqqqqK6uPqyPx0F4Gw9v0cn4/uUI1J6H/AuFQsyePTvq6ur2uf3tPL0Q4V0MANBhDB48OKZMmVKMgUKhEFOmTIljjz32bR+LQACADuSqq66KPn36RERE3759Y8qUKSUZh0AAgA6kqqoqbrzxxhgwYEDccMMNJXs9j1ecAUAHM3r06Bg9enRJx+AIAgCQEQgAQEYgAAAZgQAAZAQCAJARCABARiAAABmBAABkBAIAkBEIAEBGIAAAGYEAAGQEAgCQEQgAQEYgAAAZgQAAZAQCAJARCABARiAAABmBAABkBAIAkBEIAEBGIAAAGYEAAGQEAgCQEQgAQEYgAAAZgQAAZAQCAJARCABARiAAABmBAABkBAIAkBEIAEBGIAAAGYEAAGQEAgCQEQgAQEYgAAAZgQAAZAQCAJARCABARiAAABmBAABkBAIAkBEIAEBGIAAAGYEAAGQEAgCQEQgAQEYgAAAZgQAAZAQCAJARCABARiAAABmBAABkBAIAkBEIAEBGIAAAGYEAAGQEAgCQEQgAQEYgAAAZgQAAZAQCAJARCABARiAAABmBAABkupV6AHuqqqqK+vr64scA0NEcKc9VHSoQCoVCVFdXl3oYANCqI+W5yikGACAjEACAjEAAADICAQDICAQAICMQAICMQAAAMgIBAMgIBAAgIxAAgIxAAAAyAgEAyAgEACAjEACAjEAAADICAQDICAQAICMQAICMQAAAMgIBAMgIBAAgIxAAgIxAAAAyAgEAyAgEACAjEACAjEAAADICAQDICAQAICMQAICMQAAAMgIBAMgIBAAgIxAAgIxAAAAyAgEAyAgEACAjEACAjEAAADICAQDICAQAICMQAICMQAAAMgIBAMgIBAAgIxAAgIxAAAAyAgEAyAgEACAjEACAjEAAADICAQDICAQAICMQAICMQAAAMgIBAMgIBAAgIxAAgIxAAAAyAgEAyAgEACAjEACAjEAAADICAQDICAQAICMQAICMQAAAMgIBAMgIBAAg063UA6BzKezaGanUgyiV5h37/piIePPfBlA+BAJvydErHyr1EDqEnv/5cKmHAHBYOcUAAGQcQeCAqqqqor6+vtTDKLmUUmzfvj0iIiorK6NQKJR4RB1XVVVVqYcAHCKBwAEVCoWorq4u9TA6hKOOOqrUQwB4WzjFAABkBAIAkBEIAEBGIAAAGYEAAGQEAgCQEQgAQEYgAAAZgQAAZAQCAJARCABARiAAABmBAABkBAIAkBEIAEBGIAAAGYEAAGQEAgCQEQgAQEYgAAAZgQAAZAQCAJARCABARiAAABmBAABkBAIAkBEIAEBGIAAAGYEAAGQEAgCQEQgAQEYgAAAZgQAAZLod7B1TShERsXnz5nYbDABweO1+3t79PN6agw6ExsbGiIgYMmTIwe4CACiRxsbGqKmpafX6QjpQQrRi165dsX79+ujZs2cUCoWDHuCh2rx5cwwZMiReeeWV6NWrV8nG8XYx3/JmvuXNfMtbZ5lvSikaGxtj0KBB0aVL6680OOgjCF26dInBgwcf7N3bXa9evTr0grQ38y1v5lvezLe8dYb57u/IwW5epAgAZAQCAJDp9IFQWVkZN998c1RWVpZ6KG8L8y1v5lvezLe8ldt8D/pFigBA+er0RxAAgPYnEACAjEAAADICAQDIdJpAePrpp2Py5MkxaNCgKBQK8dhjj7W4PqUUt9xySwwaNCiqq6tj7Nix8etf/7o0g20HB5rvtGnTolAotLi8973vLc1gD9GcOXPinHPOiZ49e0b//v3j4osvjhdffLHFbcppfdsy33Ja32984xtx1llnFX95zKhRo6K+vr54fTmtbcSB51tOa7svc+bMiUKhENdff31xW7mt8Z72Nd9yWeNOEwhbt26N4cOHx1133bXP62+//faYO3du3HXXXbF8+fKora2NCRMmFP9mRGdzoPlGRLz//e+PDRs2FC8//vGP38YRtp+lS5fGddddFz//+c/jqaeeip07d8ZFF10UW7duLd6mnNa3LfONKJ/1HTx4cNx2222xYsWKWLFiRVxwwQXxoQ99qPgEUU5rG3Hg+UaUz9rubfny5fHNb34zzjrrrBbby22Nd2ttvhFlssapE4qI9OijjxY/37VrV6qtrU233XZbcVtTU1OqqalJ99xzTwlG2L72nm9KKdXV1aUPfehDJRnP4bZp06YUEWnp0qUppfJf373nm1J5r29KKR1zzDHp29/+dtmv7W6755tS+a5tY2Njeuc735meeuqpdP7556fZs2enlMr3+7e1+aZUPmvcaY4g7M+aNWti48aNcdFFFxW3VVZWxvnnnx/Lli0r4cgOryVLlkT//v3j5JNPjk984hOxadOmUg+pXfzpT3+KiIjevXtHRPmv797z3a0c17e5uTkefvjh2Lp1a4waNars13bv+e5Wjmt73XXXxaRJk+LCCy9ssb1c17i1+e5WDmt80H+sqSPZuHFjREQMGDCgxfYBAwbE2rVrSzGkw27ixIlx+eWXx9ChQ2PNmjXx2c9+Ni644IL45S9/2al/i1dKKW688cY477zz4owzzoiI8l7ffc03ovzWd/Xq1TFq1KhoamqKo48+Oh599NE47bTTik8Q5ba2rc03ovzWNiLi4Ycfjueffz6WL1+eXVeO37/7m29E+axxWQTCbnv/2emUUkn/FPXhdMUVVxQ/PuOMM2LkyJExdOjQWLhwYVx66aUlHNmhmTlzZqxatSqeeeaZ7LpyXN/W5ltu63vKKafEypUr4/XXX48f/ehHUVdXF0uXLi1eX25r29p8TzvttLJb21deeSVmz54dTz75ZFRVVbV6u3JZ47bMt1zWuCxOMdTW1kbE/5Xqbps2bcqqtVwNHDgwhg4dGv/zP/9T6qEctFmzZsWCBQti8eLFLf6UeLmub2vz3ZfOvr4VFRVx0kknxciRI2POnDkxfPjwuPPOO8t2bVub77509rX95S9/GZs2bYoRI0ZEt27dolu3brF06dL42te+Ft26dSuuY7ms8YHm29zcnN2ns65xWQTCsGHDora2Np566qnitv/93/+NpUuXxujRo0s4srdPQ0NDvPLKKzFw4MBSD+UtSynFzJkz45FHHolFixbFsGHDWlxfbut7oPnuS2de331JKcX27dvLbm1bs3u++9LZ13b8+PGxevXqWLlyZfEycuTIuOqqq2LlypVxwgknlNUaH2i+Xbt2ze7Tade4VK+OfKsaGxvTCy+8kF544YUUEWnu3LnphRdeSGvXrk0ppXTbbbelmpqa9Mgjj6TVq1enj3zkI2ngwIFp8+bNJR75wdnffBsbG9Nf//Vfp2XLlqU1a9akxYsXp1GjRqVjjz22U853xowZqaamJi1ZsiRt2LCheNm2bVvxNuW0vgeab7mt70033ZSefvrptGbNmrRq1ar06U9/OnXp0iU9+eSTKaXyWtuU9j/fclvb1uz9qv5yW+O97TnfclrjThMIixcvThGRXerq6lJKb76V5uabb061tbWpsrIyve9970urV68u7aAPwf7mu23btnTRRRelfv36pe7du6fjjjsu1dXVpXXr1pV62AdlX/OMiHT//fcXb1NO63ug+Zbb+k6fPj0NHTo0VVRUpH79+qXx48cX4yCl8lrblPY/33Jb29bsHQjltsZ723O+5bTG/twzAJApi9cgAADtSyAAABmBAABkBAIAkBEIAEBGIAAAGYEAAGQEAgCQEQgAQEYgAAAZgQBlbOzYsTFr1qy4/vrr45hjjokBAwbEN7/5zdi6dWt87GMfi549e8aJJ54Y9fX1ERGxZMmSKBQKsXDhwhg+fHhUVVXFn/3Zn8Xq1atb7Pdb3/pWDBkyJI466qi45JJLYu7cufGOd7yjBDMEDheBAGXuwQcfjL59+8Zzzz0Xs2bNihkzZsTll18eo0ePjueffz7+/M//PD760Y/Gtm3bivf51Kc+FV/5yldi+fLl0b9///jgBz8YO3bsiIiIn/3sZ3HttdfG7NmzY+XKlTFhwoS49dZbSzU94DDxx5qgjI0dOzaam5vjP/7jPyIiorm5OWpqauLSSy+NefPmRUTExo0bY+DAgfHss89GU1NTjBs3Lh5++OG44oorIiLij3/8YwwePDgeeOCB+PCHPxxXXnllbNmyJR5//PHi40ydOjUef/zxeP3119/2OQKHhyMIUObOOuus4sddu3aNPn36xJlnnlncNmDAgIiI2LRpU3HbqFGjih/37t07TjnllPjNb34TEREvvvhinHvuuS0eY+/Pgc5PIECZ6969e4vPC4VCi22FQiEiInbt2rXf/ey+XUqp+PFuDkRC+REIQObnP/958ePXXnstfvvb38app54aERGnnnpqPPfccy1uv2LFird1fMDh163UAwA6ni984QvRp0+fGDBgQHzmM5+Jvn37xsUXXxwREbNmzYr3ve99MXfu3Jg8eXIsWrQo6uvrs6MKQOfmCAKQue2222L27NkxYsSI2LBhQyxYsCAqKioiImLMmDFxzz33xNy5c2P48OHxxBNPxA033BBVVVUlHjXQnryLAShasmRJjBs3Ll577bW39HsNPvGJT8R///d/F98tAXR+TjEAb9lXvvKVmDBhQvTo0SPq6+vjwQcfjLvvvrvUwwLakUAA3rLnnnsubr/99mhsbIwTTjghvva1r8U111xT6mEB7cgpBgAg40WKAEBGIAAAGYEAAGQEAgCQEQgAQEYgAAAZgQAAZAQCAJARCABA5v8BGQ+kfonde38AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x=df.mpg)\n", + "plt.title('Boxplot of MPG')\n", + "plt.show();" + ] + }, + { + "cell_type": "markdown", + "id": "6ab5a1cd-177f-4dcb-bd79-e9ad395d51d7", + "metadata": {}, + "source": [ + "There's one value considered an outlier:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "655067f4-4c89-4e65-b65a-c1a1e4158535", + "metadata": { + "execution": { + "iopub.execute_input": "2022-08-01T00:19:00.733588Z", + "iopub.status.busy": "2022-08-01T00:19:00.733352Z", + "iopub.status.idle": "2022-08-01T00:19:00.742775Z", + "shell.execute_reply": "2022-08-01T00:19:00.741517Z", + "shell.execute_reply.started": "2022-08-01T00:19:00.733572Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
mpgcylindersdisplacementhorsepowerweightaccelerationmodel_yearorigincar_name
32246.6486.065.02110.017.9803mazda glc
\n", + "
" + ], + "text/plain": [ + " mpg cylinders displacement horsepower weight acceleration \\\n", + "322 46.6 4 86.0 65.0 2110.0 17.9 \n", + "\n", + " model_year origin car_name \n", + "322 80 3 mazda glc " + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[df.mpg > 45]" + ] + }, + { + "cell_type": "markdown", + "id": "f89f5906-7b78-4268-933a-ccf02e151b85", + "metadata": {}, + "source": [ + "I'm going to leave this in because it's a real value. I guess it appears as an outlier because the data set is so small" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "2720ba7e-272d-4cf7-810c-0a7ec7ad2e58", + "metadata": { + "execution": { + "iopub.execute_input": "2022-08-01T00:19:00.744397Z", + "iopub.status.busy": "2022-08-01T00:19:00.744001Z", + "iopub.status.idle": "2022-08-01T00:19:00.899639Z", + "shell.execute_reply": "2022-08-01T00:19:00.899044Z", + "shell.execute_reply.started": "2022-08-01T00:19:00.744367Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAH+CAYAAABTKk23AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5yElEQVR4nO3deVhWdf7/8dctyg0YoIBsI4uaW+CS2qi0COGGS6aWWzWaS864pCmXZVZCX5OxJnNG07JJ1Fy/Mz81zRa3tEWbMRx3MysVa0DSFEQJt/P7o4v72y2ggrfcH+z5uK5zXZzP53M+532OXL445z73fdssy7IEAACMVMXdBQAAgNIR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdSodObPny+bzeZYvLy8FBoaqoSEBKWlpSknJ6fYNikpKbLZbGXaz7lz55SSkqLNmzeXabuS9hUdHa1u3bqVaZ5rWbJkiWbMmFFin81mU0pKikv352obN25Uq1atVL16ddlsNq1ateqq448fP65nnnlGTZo00W233SYvLy/Vr19fY8aM0aFDh8q8/0GDBik6OtqpLTo6WoMGDSrzXFcTHx+v+Ph4l86J35aq7i4AKK/09HQ1atRIFy5cUE5Ojj777DNNmzZNf/nLX7R8+XK1b9/eMXbo0KHq3LlzmeY/d+6cUlNTJalM/9GWZ1/lsWTJEu3du1djx44t1rdt2zbVrl37ptdQXpZlqU+fPmrQoIFWr16t6tWrq2HDhqWO//e//61u3brJsiyNGjVKbdu2laenpw4ePKhFixbp97//vU6dOnXDda1cuVJ+fn43PA/gSgQ1Kq3Y2Fi1atXKsd67d2899dRTuueee9SrVy8dOnRIISEhkqTatWvf9OA6d+6cfHx8KmRf19KmTRu37v9a/vvf/+qnn35Sz549lZiYeNWxeXl56tGjh7y8vLR161ancxsfH6/hw4frn//8p0vquvPOO10yz81iWZZ+/vlneXt7u7sUVCBufeOWEhkZqVdffVVnzpzRm2++6Wgv6Xb0pk2bFB8fr8DAQHl7eysyMlK9e/fWuXPndOTIEdWqVUuSlJqa6rjNXnRbtGi+HTt26KGHHlLNmjVVr169UvdVZOXKlWratKm8vLxUt25d/e1vf3PqL7qtf+TIEaf2zZs3y2azOW7Dx8fHa+3atTp69KjTywBFSrr1vXfvXvXo0UM1a9aUl5eXmjdvrgULFpS4n6VLl2rSpEkKDw+Xn5+f2rdvr4MHD5Z+4n/ls88+U2Jionx9feXj46O4uDitXbvW0Z+SkuII26efflo2m63YLehfe+utt5Sdna2XX3651D+AHnroIUnSO++8I5vNpm3bthUb8+KLL6patWr673//W+q+rrz1XZbzYVmWXn75ZUVFRcnLy0stWrTQBx98UOJ+8vLylJycrDp16sjT01O/+93vNHbsWJ09e9ZpnM1m06hRo/TGG2+ocePGstvtjn+zOXPmqFmzZrrtttvk6+urRo0a6dlnny312FB5cUWNW06XLl3k4eGhTz75pNQxR44cUdeuXXXvvfdq3rx5qlGjhn744Qd9+OGHOn/+vMLCwvThhx+qc+fOGjJkiIYOHSpJjvAu0qtXL/Xr109//OMfi/0ne6WdO3dq7NixSklJUWhoqBYvXqwxY8bo/PnzSk5OLtMxzp49W0888YS+/fZbrVy58prjDx48qLi4OAUHB+tvf/ubAgMDtWjRIg0aNEjHjx/XhAkTnMY/++yzuvvuu/X3v/9deXl5evrpp9W9e3cdOHBAHh4epe5ny5Yt6tChg5o2baq3335bdrtds2fPVvfu3bV06VL17dtXQ4cOVbNmzdSrVy+NHj1aAwYMkN1uL3XOdevWycPDQ927d7/mcfbt21cTJkzQ66+/rrZt2zraL168qDfffFM9e/ZUeHj4Nee50vWcj9TUVKWmpmrIkCF66KGHdOzYMQ0bNkyXLl1yuq1/7tw5tWvXTt9//72effZZNW3aVPv27dMLL7ygPXv2aMOGDU5/dK1atUqffvqpXnjhBYWGhio4OFjLli3TiBEjNHr0aP3lL39RlSpV9M0332j//v1lPjZUAhZQyaSnp1uSrO3bt5c6JiQkxGrcuLFjffLkydavf93/+c9/WpKsnTt3ljrHjz/+aEmyJk+eXKyvaL4XXnih1L5fi4qKsmw2W7H9dejQwfLz87POnj3rdGyHDx92Gvfxxx9bkqyPP/7Y0da1a1crKiqqxNqvrLtfv36W3W63MjMzncYlJSVZPj4+1unTp53206VLF6dx//u//2tJsrZt21bi/oq0adPGCg4Ots6cOeNou3jxohUbG2vVrl3bunz5smVZlnX48GFLkvXKK69cdT7LsqxGjRpZoaGh1xxXZPLkyZanp6d1/PhxR9vy5cstSdaWLVscbQMHDix2/qKioqyBAwc61q/3fJw6dcry8vKyevbs6TTu888/tyRZ7dq1c7SlpaVZVapUKfb7W/Q7+f777zvaJFn+/v7WTz/95DR21KhRVo0aNa59MnBL4NY3bknWNb5mvXnz5vL09NQTTzyhBQsW6LvvvivXfnr37n3dY2NiYtSsWTOntgEDBigvL087duwo1/6v16ZNm5SYmKiIiAin9kGDBuncuXPFbhU/8MADTutNmzaVJB09erTUfZw9e1b/+te/9NBDD+m2225ztHt4eOixxx7T999/f923z2/En/70J0m/3DIvMmvWLDVp0kT33Xdfuea81vnYtm2bfv75Zz3yyCNO4+Li4hQVFeXU9t577yk2NlbNmzfXxYsXHUunTp2cXt4ocv/996tmzZpObb///e91+vRp9e/fX++++65OnDhRruNC5UBQ45Zz9uxZnTx58qq3OOvVq6cNGzYoODhYI0eOVL169VSvXj399a9/LdO+wsLCrntsaGhoqW0nT54s037L6uTJkyXWWnSOrtx/YGCg03rRremCgoJS93Hq1ClZllWm/VyPyMhI/fjjj9d8aaFISEiI+vbtqzfffFOXLl3S7t279emnn2rUqFFl3neRa52PouO62r9xkePHj2v37t2qVq2a0+Lr6yvLsoqFbknn87HHHtO8efN09OhR9e7dW8HBwWrdurXWr19f7mOEuQhq3HLWrl2rS5cuXfMtVffee6/WrFmj3NxcffHFF2rbtq3Gjh2rZcuWXfe+yvLe7Ozs7FLbioLAy8tLklRYWOg07kavmAIDA5WVlVWsvejBqqCgoBuaX5Jq1qypKlWquHw/nTp10qVLl7RmzZrr3mbMmDE6duyY3n33Xc2aNUs1atQodrXrSkX/flf7Ny4SFBSkJk2aaPv27SUuzz//vNP40n7HHn/8cW3dulW5ublau3atLMtSt27drnrXA5UTQY1bSmZmppKTk+Xv76/hw4df1zYeHh5q3bq1Xn/9dUly3Ia+nqvIsti3b5927drl1LZkyRL5+vqqRYsWkuR4+nn37t1O41avXl1sPrvdft21JSYmatOmTcWeeF64cKF8fHxc8nau6tWrq3Xr1lqxYoVTXZcvX9aiRYtUu3ZtNWjQoMzzDhkyRKGhoZowYYJ++OGHEsesWLHCab1ly5aKi4vTtGnTtHjxYg0aNEjVq1cv876vV5s2beTl5aXFixc7tW/durVYcHbr1k3ffvutAgMD1apVq2LL1Z6AL0n16tWVlJSkSZMm6fz589q3b9+NHg4Mw1PfqLT27t3reH0vJydHn376qdLT0+Xh4aGVK1cWe0L719544w1t2rRJXbt2VWRkpH7++WfNmzdPkhwflOLr66uoqCi9++67SkxMVEBAgIKCgsr8H2mR8PBwPfDAA0pJSVFYWJgWLVqk9evXa9q0afLx8ZEk3XXXXWrYsKGSk5N18eJF1axZUytXrtRnn31WbL4mTZpoxYoVmjNnjlq2bKkqVao4va/81yZPnqz33ntPCQkJeuGFFxQQEKDFixdr7dq1evnll+Xv71+uY7pSWlqaOnTooISEBCUnJ8vT01OzZ8/W3r17tXTp0jJ/Opwk+fv7691331W3bt105513On3gyaFDh7Ro0SLt2rVLvXr1ctpuzJgx6tu3r2w2m0aMGOGS4ytNzZo1lZycrClTpmjo0KF6+OGHdezYMccT/r82duxY/b//9/9033336amnnlLTpk11+fJlZWZmat26dRo/frxat2591f0NGzZM3t7euvvuuxUWFqbs7GylpaXJ399fd9111808VLiDe59lA8qu6MnoosXT09MKDg622rVrZ02dOtXKyckpts2VT2Jv27bN6tmzpxUVFWXZ7XYrMDDQateunbV69Wqn7TZs2GDdeeedlt1utyQ5nggumu/HH3+85r4s65enibt27Wr985//tGJiYixPT08rOjramj59erHtv/76a6tjx46Wn5+fVatWLWv06NHW2rVriz31/dNPP1kPPfSQVaNGDctmszntUyU8rb5nzx6re/fulr+/v+Xp6Wk1a9bMSk9PdxpT9JTzP/7xD6f2oqe0rxxfkk8//dS6//77rerVq1ve3t5WmzZtrDVr1pQ43/U89V0kOzvbevrpp62YmBjLx8fHstvt1u23324NHz7c2rNnT7HxhYWFlt1utzp37lzifGV56vt6zsfly5ettLQ0KyIiwvL09LSaNm1qrVmzxmrXrp3TU9+WZVn5+fnWc889ZzVs2NDy9PS0/P39rSZNmlhPPfWUlZ2d7RgnyRo5cmSx2hcsWGAlJCRYISEhlqenpxUeHm716dPH2r17dylnD5WZzbKu8XgsAFRCa9as0QMPPKC1a9eqS5cu7i4HKDeCGsAtZf/+/Tp69KjGjBmj6tWra8eOHeW65Q6YgofJANxSRowYoQceeEA1a9Ys9+vigEm4ogYAwGBcUQMAYDCCGgAAgxHUAAAYjKDWL1/gkJeXd80vcgAAoKIR1JLOnDkjf39/nTlzxt2lAADghKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABqvq7gLw25aZmakTJ064u4xigoKCFBkZ6e4yAICghvtkZmaqUaPGKig45+5SivH29tFXXx0grAG4HUENtzlx4oQKCs6p9eDJ8guLdnc5DnlZR/Sveak6ceIEQQ3A7dwa1GlpaVqxYoW++uoreXt7Ky4uTtOmTVPDhg0dYyzLUmpqqubOnatTp06pdevWev311xUTE+MYU1hYqOTkZC1dulQFBQVKTEzU7NmzVbt2bXccFsrILyxaAZENrz0QAH6D3Pow2ZYtWzRy5Eh98cUXWr9+vS5evKiOHTvq7NmzjjEvv/yypk+frlmzZmn79u0KDQ1Vhw4ddObMGceYsWPHauXKlVq2bJk+++wz5efnq1u3brp06ZI7DgsAAJdx6xX1hx9+6LSenp6u4OBgZWRk6L777pNlWZoxY4YmTZqkXr16SZIWLFigkJAQLVmyRMOHD1dubq7efvttvfPOO2rfvr0kadGiRYqIiNCGDRvUqVOnCj8uAABcxai3Z+Xm5kqSAgICJEmHDx9Wdna2Onbs6Bhjt9vVrl07bd26VZKUkZGhCxcuOI0JDw9XbGysY8yVCgsLlZeX57QAAGAiY4LasiyNGzdO99xzj2JjYyVJ2dnZkqSQkBCnsSEhIY6+7OxseXp6qmbNmqWOuVJaWpr8/f0dS0REhKsPBwAAlzAmqEeNGqXdu3dr6dKlxfpsNpvTumVZxdqudLUxEydOVG5urmM5duxY+QsHAOAmMiKoR48erdWrV+vjjz92elI7NDRUkopdGefk5DiuskNDQ3X+/HmdOnWq1DFXstvt8vPzc1oAADCRW4PasiyNGjVKK1as0KZNm1SnTh2n/jp16ig0NFTr1693tJ0/f15btmxRXFycJKlly5aqVq2a05isrCzt3bvXMQYAgMrKrU99jxw5UkuWLNG7774rX19fx5Wzv7+/vL29ZbPZNHbsWE2dOlX169dX/fr1NXXqVPn4+GjAgAGOsUOGDNH48eMVGBiogIAAJScnq0mTJo6nwAEAqKzcGtRz5syRJMXHxzu1p6ena9CgQZKkCRMmqKCgQCNGjHB84Mm6devk6+vrGP/aa6+patWq6tOnj+MDT+bPny8PD4+KOhQAAG4Ktwa1ZVnXHGOz2ZSSkqKUlJRSx3h5eWnmzJmaOXOmC6sDAMD9jHiYDAAAlIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDC3BvUnn3yi7t27Kzw8XDabTatWrXLqt9lsJS6vvPKKY0x8fHyx/n79+lXwkQAAcHO4NajPnj2rZs2aadasWSX2Z2VlOS3z5s2TzWZT7969ncYNGzbMadybb75ZEeUDAHDTVXXnzpOSkpSUlFRqf2hoqNP6u+++q4SEBNWtW9ep3cfHp9hYAABuBZXmNerjx49r7dq1GjJkSLG+xYsXKygoSDExMUpOTtaZM2euOldhYaHy8vKcFgAATOTWK+qyWLBggXx9fdWrVy+n9kceeUR16tRRaGio9u7dq4kTJ2rXrl1av359qXOlpaUpNTX1ZpcMAMANqzRBPW/ePD3yyCPy8vJyah82bJjj59jYWNWvX1+tWrXSjh071KJFixLnmjhxosaNG+dYz8vLU0RExM0pHACAG1ApgvrTTz/VwYMHtXz58muObdGihapVq6ZDhw6VGtR2u112u93VZQIA4HKV4jXqt99+Wy1btlSzZs2uOXbfvn26cOGCwsLCKqAyAABuLrdeUefn5+ubb75xrB8+fFg7d+5UQECAIiMjJf1yW/of//iHXn311WLbf/vtt1q8eLG6dOmioKAg7d+/X+PHj9edd96pu+++u8KOAwCAm8WtQf3ll18qISHBsV70uvHAgQM1f/58SdKyZctkWZb69+9fbHtPT09t3LhRf/3rX5Wfn6+IiAh17dpVkydPloeHR4UcAwAAN5Nbgzo+Pl6WZV11zBNPPKEnnniixL6IiAht2bLlZpQGAIARKsVr1AAA/FYR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAzm1qD+5JNP1L17d4WHh8tms2nVqlVO/YMGDZLNZnNa2rRp4zSmsLBQo0ePVlBQkKpXr64HHnhA33//fQUeBQAAN49bg/rs2bNq1qyZZs2aVeqYzp07Kysry7G8//77Tv1jx47VypUrtWzZMn322WfKz89Xt27ddOnSpZtdPgAAN11Vd+48KSlJSUlJVx1jt9sVGhpaYl9ubq7efvttvfPOO2rfvr0kadGiRYqIiNCGDRvUqVMnl9cMAEBFMv416s2bNys4OFgNGjTQsGHDlJOT4+jLyMjQhQsX1LFjR0dbeHi4YmNjtXXr1lLnLCwsVF5entMCAICJjA7qpKQkLV68WJs2bdKrr76q7du36/7771dhYaEkKTs7W56enqpZs6bTdiEhIcrOzi513rS0NPn7+zuWiIiIm3ocAACUl1tvfV9L3759HT/HxsaqVatWioqK0tq1a9WrV69St7MsSzabrdT+iRMnaty4cY71vLw8whoAYCSjr6ivFBYWpqioKB06dEiSFBoaqvPnz+vUqVNO43JychQSElLqPHa7XX5+fk4LAAAmqlRBffLkSR07dkxhYWGSpJYtW6patWpav369Y0xWVpb27t2ruLg4d5UJAIDLuPXWd35+vr755hvH+uHDh7Vz504FBAQoICBAKSkp6t27t8LCwnTkyBE9++yzCgoKUs+ePSVJ/v7+GjJkiMaPH6/AwEAFBAQoOTlZTZo0cTwFDgBAZebWoP7yyy+VkJDgWC963XjgwIGaM2eO9uzZo4ULF+r06dMKCwtTQkKCli9fLl9fX8c2r732mqpWrao+ffqooKBAiYmJmj9/vjw8PCr8eAAAcDW3BnV8fLwsyyq1/6OPPrrmHF5eXpo5c6ZmzpzpytIAADBCpXqNGgCA3xqCGgAAgxHUAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMHcGtSffPKJunfvrvDwcNlsNq1atcrRd+HCBT399NNq0qSJqlevrvDwcP3hD3/Qf//7X6c54uPjZbPZnJZ+/fpV8JEAAHBzuDWoz549q2bNmmnWrFnF+s6dO6cdO3bo+eef144dO7RixQp9/fXXeuCBB4qNHTZsmLKyshzLm2++WRHlAwBw01V1586TkpKUlJRUYp+/v7/Wr1/v1DZz5kz9/ve/V2ZmpiIjIx3tPj4+Cg0Nvam1AgDgDpXqNerc3FzZbDbVqFHDqX3x4sUKCgpSTEyMkpOTdebMmavOU1hYqLy8PKcFAAATufWKuix+/vlnPfPMMxowYID8/Pwc7Y888ojq1Kmj0NBQ7d27VxMnTtSuXbuKXY3/WlpamlJTUyuibAAAbkilCOoLFy6oX79+unz5smbPnu3UN2zYMMfPsbGxql+/vlq1aqUdO3aoRYsWJc43ceJEjRs3zrGel5eniIiIm1M8AAA3wPigvnDhgvr06aPDhw9r06ZNTlfTJWnRooWqVaumQ4cOlRrUdrtddrv9ZpQLAIBLGR3URSF96NAhffzxxwoMDLzmNvv27dOFCxcUFhZWARUCAHBzuTWo8/Pz9c033zjWDx8+rJ07dyogIEDh4eF66KGHtGPHDr333nu6dOmSsrOzJUkBAQHy9PTUt99+q8WLF6tLly4KCgrS/v37NX78eN155526++673XVYAAC4jFuD+ssvv1RCQoJjveh144EDByolJUWrV6+WJDVv3txpu48//ljx8fHy9PTUxo0b9de//lX5+fmKiIhQ165dNXnyZHl4eFTYcQAAcLO4Najj4+NlWVap/Vfrk6SIiAht2bLF1WUBAGCMSvU+agAAfmsIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAg5UrqOvWrauTJ08Waz99+rTq1q17w0UBAIBflCuojxw5okuXLhVrLyws1A8//HDDRQEAgF+U6Wsui74fWpI++ugj+fv7O9YvXbqkjRs3Kjo62mXFAQDwW1emoH7wwQclSTabTQMHDnTqq1atmqKjo/Xqq6+6rDgAAH7ryhTUly9fliTVqVNH27dvV1BQ0E0pCgAA/KJMQV3k8OHDrq4DAACUoFxBLUkbN27Uxo0blZOT47jSLjJv3rwbLgwAAJQzqFNTU/Xiiy+qVatWCgsLk81mc3VdAABA5QzqN954Q/Pnz9djjz3m6noAAMCvlOt91OfPn1dcXJyrawEAAFcoV1APHTpUS5YscXUtAADgCuW69f3zzz9r7ty52rBhg5o2bapq1ao59U+fPt0lxQEA8FtXrqDevXu3mjdvLknau3evUx8PlgEA4DrlCuqPP/7Y1XUAAIAS8DWXAAAYrFxX1AkJCVe9xb1p06ZyFwQAAP5PuYK66PXpIhcuXNDOnTu1d+/eYl/WAQAAyq9cQf3aa6+V2J6SkqL8/PwbKggAAPwfl75G/eijj/I53wAAuJBLg3rbtm3y8vJy5ZQAAPymlevWd69evZzWLctSVlaWvvzySz3//PMuKQwAAJQzqP39/Z3Wq1SpooYNG+rFF19Ux44dXVIYAAAoZ1Cnp6e7ug4AAFCCcgV1kYyMDB04cEA2m0133HGH7rzzTlfVBQAAVM6gzsnJUb9+/bR582bVqFFDlmUpNzdXCQkJWrZsmWrVquXqOgEA+E0qV1CPHj1aeXl52rdvnxo3bixJ2r9/vwYOHKgnn3xSS5cudWmRAIDfnszMTJ04ccLdZTgJCgpSZGRkhe6zXEH94YcfasOGDY6QlqQ77rhDr7/+Og+TAQBuWGZmpho1aqyCgnPuLsWJt7ePvvrqQIWGdbmC+vLly8W+g1qSqlWrpsuXL1/3PJ988oleeeUVZWRkKCsrSytXrtSDDz7o6LcsS6mpqZo7d65OnTql1q1b6/XXX1dMTIxjTGFhoZKTk7V06VIVFBQoMTFRs2fPVu3atctzaAAAA5w4cUIFBefUevBk+YVFu7scSVJe1hH9a16qTpw4YX5Q33///RozZoyWLl2q8PBwSdIPP/ygp556SomJidc9z9mzZ9WsWTM9/vjj6t27d7H+l19+WdOnT9f8+fPVoEEDTZkyRR06dNDBgwfl6+srSRo7dqzWrFmjZcuWKTAwUOPHj1e3bt2UkZEhDw+P8hweAMAQfmHRCohs6O4y3KpcQT1r1iz16NFD0dHRioiIkM1mU2Zmppo0aaJFixZd9zxJSUlKSkoqsc+yLM2YMUOTJk1yfMDKggULFBISoiVLlmj48OHKzc3V22+/rXfeeUft27eXJC1atEgRERHasGGDOnXqVJ7DAwDAGOUK6oiICO3YsUPr16/XV199JcuydMcddzjC0hUOHz6s7Oxsp9e87Xa72rVrp61bt2r48OHKyMjQhQsXnMaEh4crNjZWW7duJagBAJVemT7re9OmTbrjjjuUl5cnSerQoYNGjx6tJ598UnfddZdiYmL06aefuqSw7OxsSVJISIhTe0hIiKMvOztbnp6eqlmzZqljSlJYWKi8vDynBQAAE5UpqGfMmKFhw4bJz8+vWJ+/v7+GDx+u6dOnu6w4SbLZbE7rlmUVa7vStcakpaXJ39/fsURERLikVgAAXK1MQb1r1y517ty51P6OHTsqIyPjhouSpNDQUEkqdmWck5PjuMoODQ3V+fPnderUqVLHlGTixInKzc11LMeOHXNJzQAAuFqZgvr48eMlvi2rSNWqVfXjjz/ecFGSVKdOHYWGhmr9+vWOtvPnz2vLli2Ki4uTJLVs2VLVqlVzGpOVlaW9e/c6xpTEbrfLz8/PaQEAwERlepjsd7/7nfbs2aPbb7+9xP7du3crLCzsuufLz8/XN99841g/fPiwdu7cqYCAAEVGRmrs2LGaOnWq6tevr/r162vq1Kny8fHRgAEDJP1yu33IkCEaP368AgMDFRAQoOTkZDVp0sSlD7YBAOAuZQrqLl266IUXXlBSUpK8vLyc+goKCjR58mR169btuuf78ssvlZCQ4FgfN26cJGngwIGaP3++JkyYoIKCAo0YMcLxgSfr1q1zvIdakl577TVVrVpVffr0cXzgyfz583kPNQDgllCmoH7uuee0YsUKNWjQQKNGjVLDhg1ls9l04MABvf7667p06ZImTZp03fPFx8fLsqxS+202m1JSUpSSklLqGC8vL82cOVMzZ84sy6EAAFAplCmoQ0JCtHXrVv3pT3/SxIkTHSFrs9nUqVMnzZ49+6oPcQEAgLIp8weeREVF6f3339epU6f0zTffyLIs1a9fv9h7mQEAwI0r1yeTSVLNmjV11113ubIWAABwhTK9PQsAAFQsghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgBDUAAAYjqAEAMFhVdxcAADdDZmamTpw44e4ynAQFBSkyMtLdZaCSIagB3HIyMzPVqFFjFRScc3cpTry9ffTVVwcIa5QJQQ3glnPixAkVFJxT68GT5RcW7e5yJEl5WUf0r3mpOnHiBEGNMiGoAdyy/MKiFRDZ0N1lADeEh8kAADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBjA/q6Oho2Wy2YsvIkSMlSYMGDSrW16ZNGzdXDQCAaxj/Wd/bt2/XpUuXHOt79+5Vhw4d9PDDDzvaOnfurPT0dMe6p6dnhdYIAMDNYnxQ16pVy2n9z3/+s+rVq6d27do52ux2u0JDQyu6NAAAbjrjb33/2vnz57Vo0SINHjxYNpvN0b5582YFBwerQYMGGjZsmHJyctxYJQAArmP8FfWvrVq1SqdPn9agQYMcbUlJSXr44YcVFRWlw4cP6/nnn9f999+vjIwM2e32EucpLCxUYWGhYz0vL+9mlw4AQLlUqqB+++23lZSUpPDwcEdb3759HT/HxsaqVatWioqK0tq1a9WrV68S50lLS1NqaupNrxcAgBtVaW59Hz16VBs2bNDQoUOvOi4sLExRUVE6dOhQqWMmTpyo3Nxcx3Ls2DFXlwsAgEtUmivq9PR0BQcHq2vXrlcdd/LkSR07dkxhYWGljrHb7aXeFgcAwCSV4or68uXLSk9P18CBA1W16v/9bZGfn6/k5GRt27ZNR44c0ebNm9W9e3cFBQWpZ8+ebqwYAADXqBRX1Bs2bFBmZqYGDx7s1O7h4aE9e/Zo4cKFOn36tMLCwpSQkKDly5fL19fXTdUCAOA6lSKoO3bsKMuyirV7e3vro48+ckNFAABUjEpx6xsAgN8qghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBjA7qlJQU2Ww2pyU0NNTRb1mWUlJSFB4eLm9vb8XHx2vfvn1urBgAANcyOqglKSYmRllZWY5lz549jr6XX35Z06dP16xZs7R9+3aFhoaqQ4cOOnPmjBsrBgDAdYwP6qpVqyo0NNSx1KpVS9IvV9MzZszQpEmT1KtXL8XGxmrBggU6d+6clixZ4uaqAQBwDeOD+tChQwoPD1edOnXUr18/fffdd5Kkw4cPKzs7Wx07dnSMtdvtateunbZu3equcgEAcKmq7i7galq3bq2FCxeqQYMGOn78uKZMmaK4uDjt27dP2dnZkqSQkBCnbUJCQnT06NGrzltYWKjCwkLHel5enuuLBwDABYwO6qSkJMfPTZo0Udu2bVWvXj0tWLBAbdq0kSTZbDanbSzLKtZ2pbS0NKWmprq+YAAAXMz4W9+/Vr16dTVp0kSHDh1yPP1ddGVdJCcnp9hV9pUmTpyo3Nxcx3Ls2LGbVjMAADeiUgV1YWGhDhw4oLCwMNWpU0ehoaFav369o//8+fPasmWL4uLirjqP3W6Xn5+f0wIAgImMvvWdnJys7t27KzIyUjk5OZoyZYry8vI0cOBA2Ww2jR07VlOnTlX9+vVVv359TZ06VT4+PhowYIC7SwcAwCWMDurvv/9e/fv314kTJ1SrVi21adNGX3zxhaKioiRJEyZMUEFBgUaMGKFTp06pdevWWrdunXx9fd1cOQAArmF0UC9btuyq/TabTSkpKUpJSamYggAAqGCV6jVqAAB+awhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwmNFBnZaWprvuuku+vr4KDg7Wgw8+qIMHDzqNGTRokGw2m9PSpk0bN1UMAIBrGR3UW7Zs0ciRI/XFF19o/fr1unjxojp27KizZ886jevcubOysrIcy/vvv++migEAcK2q7i7gaj788EOn9fT0dAUHBysjI0P33Xefo91utys0NLSiywMA4KYz+or6Srm5uZKkgIAAp/bNmzcrODhYDRo00LBhw5STk3PVeQoLC5WXl+e0AABgokoT1JZlady4cbrnnnsUGxvraE9KStLixYu1adMmvfrqq9q+fbvuv/9+FRYWljpXWlqa/P39HUtERERFHAIAAGVm9K3vXxs1apR2796tzz77zKm9b9++jp9jY2PVqlUrRUVFae3aterVq1eJc02cOFHjxo1zrOfl5RHWAAAjVYqgHj16tFavXq1PPvlEtWvXvurYsLAwRUVF6dChQ6WOsdvtstvtri4TAACXMzqoLcvS6NGjtXLlSm3evFl16tS55jYnT57UsWPHFBYWVgEVAgBwcxn9GvXIkSO1aNEiLVmyRL6+vsrOzlZ2drYKCgokSfn5+UpOTta2bdt05MgRbd68Wd27d1dQUJB69uzp5uoBALhxRl9Rz5kzR5IUHx/v1J6enq5BgwbJw8NDe/bs0cKFC3X69GmFhYUpISFBy5cvl6+vrxsqBgDAtYwOasuyrtrv7e2tjz76qIKqAQCg4hl96xsAgN86ghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDVXV3AbeizMxMnThxwt1lOAkKClJkZKS7ywAAlBFB7WKZmZlq1KixCgrOubsUJ97ePvrqqwOENQBUMgS1i504cUIFBefUevBk+YVFu7scSVJe1hH9a16qTpw4QVBXYibeqZG4WwPcbAT1TeIXFq2AyIbuLgO3CFPv1EjcrQFuNoIaqARMvFMjcbcGqAi3TFDPnj1br7zyirKyshQTE6MZM2bo3nvvdXdZgEtxpwb47bkl3p61fPlyjR07VpMmTdJ//vMf3XvvvUpKSlJmZqa7SwMA4IbcEkE9ffp0DRkyREOHDlXjxo01Y8YMRUREaM6cOe4uDQCAG1Lpb32fP39eGRkZeuaZZ5zaO3bsqK1bt5a4TWFhoQoLCx3rubm5kqS8vLwbric/P1+S9NPRg7pYWHDD87lCXvYvdxYyMjIc9Zng4MGDksw6V5KZ54tzVTYmni9Tz5UkValSRZcvX3Z3GU5M/jfMz893SV5Ikq+vr2w229UHWZXcDz/8YEmyPv/8c6f2l156yWrQoEGJ20yePNmSxMLCwsLC4tYlNzf3mjlX6a+oi1z5F4llWaX+lTJx4kSNGzfOsX758mX99NNPCgwMvPZfNteQl5eniIgIHTt2TH5+fjc0162Oc3X9OFdlw/m6fpyr63czzpWvr+81x1T6oA4KCpKHh4eys7Od2nNychQSElLiNna7XXa73amtRo0aLq3Lz8+PX/rrxLm6fpyrsuF8XT/O1fWr6HNV6R8m8/T0VMuWLbV+/Xqn9vXr1ysuLs5NVQEA4BqV/opaksaNG6fHHntMrVq1Utu2bTV37lxlZmbqj3/8o7tLAwDghtwSQd23b1+dPHlSL774orKyshQbG6v3339fUVFRFV6L3W7X5MmTi91aR3Gcq+vHuSobztf141xdP3edK5tlWVaF7hEAAFy3Sv8aNQAAtzKCGgAAgxHUAAAYjKAGAMBgBLULzJkzR02bNnW8Cb5t27b64IMP3F1WpZCWliabzaaxY8e6uxQjpaSkyGazOS2hoaHuLstYP/zwgx599FEFBgbKx8dHzZs3V0ZGhrvLMlJ0dHSx3y2bzaaRI0e6uzTjXLx4Uc8995zq1Kkjb29v1a1bVy+++GKFfT76LfH2LHerXbu2/vznP+v222+XJC1YsEA9evTQf/7zH8XExLi5OnNt375dc+fOVdOmTd1ditFiYmK0YcMGx7qHh4cbqzHXqVOndPfddyshIUEffPCBgoOD9e2337r8UwdvFdu3b9elS5cc63v37lWHDh308MMPu7EqM02bNk1vvPGGFixYoJiYGH355Zd6/PHH5e/vrzFjxtz0/RPULtC9e3en9Zdeeklz5szRF198QVCXIj8/X4888ojeeustTZkyxd3lGK1q1apcRV+HadOmKSIiQunp6Y626Oho9xVkuFq1ajmt//nPf1a9evXUrl07N1Vkrm3btqlHjx7q2rWrpF9+r5YuXaovv/yyQvbPrW8Xu3TpkpYtW6azZ8+qbdu27i7HWCNHjlTXrl3Vvn17d5divEOHDik8PFx16tRRv3799N1337m7JCOtXr1arVq10sMPP6zg4GDdeeedeuutt9xdVqVw/vx5LVq0SIMHD77hLya6Fd1zzz3auHGjvv76a0nSrl279Nlnn6lLly4Vsn+uqF1kz549atu2rX7++WfddtttWrlype644w53l2WkZcuWaceOHdq+fbu7SzFe69attXDhQjVo0EDHjx/XlClTFBcXp3379ikwMNDd5Rnlu+++05w5czRu3Dg9++yz+ve//60nn3xSdrtdf/jDH9xdntFWrVql06dPa9CgQe4uxUhPP/20cnNz1ahRI3l4eOjSpUt66aWX1L9//4op4Ma/ERqWZVmFhYXWoUOHrO3bt1vPPPOMFRQUZO3bt8/dZRknMzPTCg4Otnbu3Oloa9eunTVmzBj3FVWJ5OfnWyEhIdarr77q7lKMU61aNatt27ZObaNHj7batGnjpooqj44dO1rdunVzdxnGWrp0qVW7dm1r6dKl1u7du62FCxdaAQEB1vz58ytk/wT1TZKYmGg98cQT7i7DOCtXrrQkWR4eHo5FkmWz2SwPDw/r4sWL7i7ReO3bt7f++Mc/ursM40RGRlpDhgxxaps9e7YVHh7upooqhyNHjlhVqlSxVq1a5e5SjFW7dm1r1qxZTm3/8z//YzVs2LBC9s+t75vEsiwVFha6uwzjJCYmas+ePU5tjz/+uBo1aqSnn36aJ5qvobCwUAcOHNC9997r7lKMc/fdd+vgwYNObV9//bVbvpynMklPT1dwcLDjQSkUd+7cOVWp4vxIl4eHB2/PqkyeffZZJSUlKSIiQmfOnNGyZcu0efNmffjhh+4uzTi+vr6KjY11aqtevboCAwOLtUNKTk5W9+7dFRkZqZycHE2ZMkV5eXkaOHCgu0szzlNPPaW4uDhNnTpVffr00b///W/NnTtXc+fOdXdpxrp8+bLS09M1cOBAVa1KHJSme/fueumllxQZGamYmBj95z//0fTp0zV48OCKKaBCrttvcYMHD7aioqIsT09Pq1atWlZiYqK1bt06d5dVafAaden69u1rhYWFWdWqVbPCw8OtXr168ezDVaxZs8aKjY217Ha71ahRI2vu3LnuLsloH330kSXJOnjwoLtLMVpeXp41ZswYKzIy0vLy8rLq1q1rTZo0ySosLKyQ/fM1lwAAGIz3UQMAYDCCGgAAgxHUAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAIqOjtaMGTMc6zabTatWrbqhOefPn68aNWrc0BwA+AhRACXIyspSzZo13V0GABHUAEoQGhrq7hIkSRcuXFC1atXcXQbgVtz6Bm4Rly9f1rRp03T77bfLbrcrMjJSL730ku6//36NGjXKaezJkydlt9u1adOmEuf69a3vI0eOyGazacWKFUpISJCPj4+aNWumbdu2OW0zf/58RUZGysfHRz179tTJkyeLzbtmzRq1bNlSXl5eqlu3rlJTU3Xx4kWn/b7xxhvq0aOHqlevrilTpujUqVN65JFHVKtWLXl7e6t+/fpKT0+/wbMFVB4ENXCLmDhxoqZNm6bnn39e+/fv15IlSxQSEqKhQ4dqyZIlTl+7unjxYoWHhyshIeG65580aZKSk5O1c+dONWjQQP3793eE7L/+9S8NHjxYI0aM0M6dO5WQkKApU6Y4bf/RRx/p0Ucf1ZNPPqn9+/frzTff1Pz58/XSSy85jZs8ebJ69OihPXv2aPDgwY7j+eCDD3TgwAHNmTNHQUFBN3CmgEqmQr76A8BNlZeXZ9ntduutt94q1vfzzz9bAQEB1vLlyx1tzZs3t1JSUhzrUVFR1muvveZYl2StXLnSsizLOnz4sCXJ+vvf/+7o37dvnyXJOnDggGVZltW/f3+rc+fOTvvt27ev5e/v71i/9957ralTpzqNeeedd6ywsDCn/Y4dO9ZpTPfu3a3HH3/8GmcAuHVxRQ3cAg4cOKDCwkIlJiYW67Pb7Xr00Uc1b948SdLOnTu1a9cuDRo0qEz7aNq0qePnsLAwSVJOTo5j/23btnUaf+V6RkaGXnzxRd12222OZdiwYcrKytK5c+cc41q1auW03Z/+9CctW7ZMzZs314QJE7R169Yy1Q1UdjxMBtwCvL29r9o/dOhQNW/eXN9//73mzZunxMRERUVFlWkfv36oy2azSfrldXFJsq7j23IvX76s1NRU9erVq1ifl5eX4+fq1as79SUlJeno0aNau3atNmzYoMTERI0cOVJ/+ctfylQ/UFlxRQ3cAurXry9vb29t3LixxP4mTZqoVatWeuutt7RkyRINHjzYpfu/44479MUXXzi1XbneokULHTx4ULfffnuxpUqVq/9XVKtWLQ0aNEiLFi3SjBkzNHfuXJfWD5iMK2rgFuDl5aWnn35aEyZMkKenp+6++279+OOP2rdvn4YMGSLpl6vqUaNGOZ7KdqUnn3xScXFxevnll/Xggw9q3bp1+vDDD53GvPDCC+rWrZsiIiL08MMPq0qVKtq9e7f27NlT7MGzK7dr2bKlYmJiVFhYqPfee0+NGzd2af2AybiiBm4Rzz//vMaPH68XXnhBjRs3Vt++fR2vIUtS//79VbVqVQ0YMMDpVrMrtGnTRn//+981c+ZMNW/eXOvWrdNzzz3nNKZTp0567733tH79et11111q06aNpk+ffs1b8J6enpo4caKaNm2q++67Tx4eHlq2bJlL6wdMZrOu58UlAJXesWPHFB0dre3bt6tFixbuLgfAdSKogVvchQsXlJWVpWeeeUZHjx7V559/7u6SAJQBt76BW9znn3+uqKgoZWRk6I033nB3OQDKiCtqAAAMxhU1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABvv/JRhjKh0o+/4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.displot(x=df.cylinders)\n", + "plt.title('Distribution of Cylinders')\n", + "plt.show();" + ] + }, + { + "cell_type": "markdown", + "id": "7d99f70d-728f-4df3-a178-023617e642af", + "metadata": {}, + "source": [ + "4 Cylinder engines outnumber the others by a lot. It would be nice if we had more info to go off of, particularly if 6 cylinders could be split between inline and V configurations. It's less important for the others cause while inline-8s and V4s exist they're so uncommon in cars of this vintage that we can assume they don't exist. They'll get different fuel economy but not by enough to sway things at the level of accuracy we're at. Inline-6 vs V6 though I think there could be something to see there and it could improve accuracy slightly" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "8fecb4c7-cdda-4922-8018-3e5160f6ecf1", + "metadata": { + "execution": { + "iopub.execute_input": "2022-08-01T00:19:00.900607Z", + "iopub.status.busy": "2022-08-01T00:19:00.900368Z", + "iopub.status.idle": "2022-08-01T00:19:01.039878Z", + "shell.execute_reply": "2022-08-01T00:19:01.039298Z", + "shell.execute_reply.started": "2022-08-01T00:19:00.900591Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAH+CAYAAABTKk23AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5aUlEQVR4nO3de1xVVf7/8fdR4QiKeOeiAmp4y2vqmFaDV7xrw1Q66qRNNjZeEs00xymxmcHS0Zgyc5wpdXLMpiYbJ8vEG1ZqP0XNy6jppGIGEYaCQiCwfn/04Hw9AiqInkW+no/Hfjzaa6+992edRbzd52zOdhhjjAAAgJUqeboAAABQMoIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGrfE8uXL5XA4XEvVqlUVGBioHj16aO7cuUpNTS2yT0xMjBwOR6nOk5WVpZiYGG3durVU+xV3rrCwMA0aNKhUx7mWVatWKS4urthtDodDMTEx5Xq+8rZp0yZ16tRJ1apVk8Ph0HvvvVdsv5MnT7rNt5eXl+rUqaPOnTtrypQpOnToUJF9tm7dKofDUeq5u16FNS1fvvymHL+iW7x4Ma+NpQhq3FLLli3Tjh07FB8fr1deeUXt27fXCy+8oJYtW2rjxo1ufceOHasdO3aU6vhZWVmaM2dOqX/Zl+VcZXG1oN6xY4fGjh1702soK2OMHnroIXl5eWnt2rXasWOHIiIirrrPpEmTtGPHDiUkJOiNN97Q/fffr7Vr16pdu3aaP3++W9+77rpLO3bs0F133XUzh4ESENT2quLpAnB7ad26tTp16uRa//nPf64pU6bo3nvvVVRUlI4dO6aAgABJUsOGDdWwYcObWk9WVpZ8fX1vybmu5e677/bo+a/l66+/1nfffaef/exn6tWr13XtExIS4jauAQMGaOrUqYqKitL06dPVunVr9e/fX5JUo0YN618DwBO4oobHhYSEaMGCBcrMzNRf/vIXV3txb0dv3rxZ3bt3V506deTj46OQkBD9/Oc/V1ZWlk6ePKl69epJkubMmeN623XMmDFux9uzZ48eeOAB1apVS02bNi3xXIXWrFmjtm3bqmrVqmrSpIleeuklt+2Fb+ufPHnSrf3Kt3K7d++udevW6dSpU25vCxcq7q3vgwcPaujQoapVq5aqVq2q9u3ba8WKFcWe580339SsWbMUHBysGjVqqHfv3jp69GjJL/xlPvnkE/Xq1Ut+fn7y9fVVt27dtG7dOtf2mJgY1z9kZsyYIYfDobCwsOs69pV8fHz02muvycvLy+2quri3vr/88ksNHz5cwcHBcjqdCggIUK9evbRv3z5Xn8KPKK41T8U5fvy4HnnkEYWHh8vX11cNGjTQ4MGDdeDAgSJ9z507pyeffFJNmjSR0+lU/fr1NWDAAB05csTVJzc3V3/4wx/UokULOZ1O1atXT4888oi+/fZbt2MV1vz++++rQ4cO8vHxUcuWLfX+++9L+uFnqmXLlqpWrZp+8pOfaPfu3UXq2b17t4YMGaLatWuratWq6tChg/75z3+69Sn82dyyZYt+85vfqG7duqpTp46ioqL09ddfu9Vz6NAhJSQkuH4uyzq/KH9cUcMKAwYMUOXKlbVt27YS+5w8eVIDBw7Ufffdp9dff101a9bUmTNntH79euXm5iooKEjr169Xv3799Oijj7reRi4M70JRUVEaPny4Hn/8cV28ePGqde3bt0/R0dGKiYlRYGCg/vGPf2jy5MnKzc3VtGnTSjXGxYsX69e//rX+97//ac2aNdfsf/ToUXXr1k3169fXSy+9pDp16mjlypUaM2aMvvnmG02fPt2t/29/+1vdc889+tvf/qaMjAzNmDFDgwcP1uHDh1W5cuUSz5OQkKA+ffqobdu2eu211+R0OrV48WINHjxYb775poYNG6axY8eqXbt2ioqK0qRJkzRixAg5nc5Sjf9ywcHB6tixo7Zv3668vDxVqVL8r6IBAwYoPz9f8+bNU0hIiNLS0rR9+3adO3fOrV9Z5+nrr79WnTp19Pzzz6tevXr67rvvtGLFCnXp0kV79+5V8+bNJUmZmZm69957dfLkSc2YMUNdunTRhQsXtG3bNiUnJ6tFixYqKCjQ0KFD9fHHH2v69Onq1q2bTp06pdmzZ6t79+7avXu3fHx8XOf+/PPPNXPmTM2aNUv+/v6aM2eOoqKiNHPmTG3atEmxsbFyOByaMWOGBg0apBMnTrj237Jli/r166cuXbpoyZIl8vf31+rVqzVs2DBlZWW5/nFaaOzYsRo4cKBWrVql06dP66mnntKoUaO0efNmST/8Y/SBBx6Qv7+/Fi9eLEk3NL8oZwa4BZYtW2YkmV27dpXYJyAgwLRs2dK1Pnv2bHP5j+g777xjJJl9+/aVeIxvv/3WSDKzZ88usq3weM8++2yJ2y4XGhpqHA5HkfP16dPH1KhRw1y8eNFtbCdOnHDrt2XLFiPJbNmyxdU2cOBAExoaWmztV9Y9fPhw43Q6TVJSklu//v37G19fX3Pu3Dm38wwYMMCt3z//+U8jyezYsaPY8xW6++67Tf369U1mZqarLS8vz7Ru3do0bNjQFBQUGGOMOXHihJFk5s+ff9XjXW/fYcOGGUnmm2++cRtH4euVlpZmJJm4uLirnut656mwpmXLlpV4rLy8PJObm2vCw8PNlClTXO3PPfeckWTi4+NL3PfNN980ksy//vUvt/Zdu3YZSWbx4sVuNfv4+JivvvrK1bZv3z4jyQQFBblqNsaY9957z0gya9eudbW1aNHCdOjQwVy6dMntXIMGDTJBQUEmPz/fGPN/P5vjx4936zdv3jwjySQnJ7va7rzzThMREVHi+OA5vPUNa5hrPBq9ffv28vb21q9//WutWLFCX375ZZnO8/Of//y6+955551q166dW9uIESOUkZGhPXv2lOn812vz5s3q1auXGjVq5NY+ZswYZWVlFbn5bciQIW7rbdu2lSSdOnWqxHNcvHhRn332mR544AFVr17d1V65cmX98pe/1FdffXXdb5+X1rXmu3bt2mratKnmz5+vhQsXau/evSooKCi2b1nnKS8vT7GxsWrVqpW8vb1VpUoVeXt769ixYzp8+LCr34cffqhmzZqpd+/eJR7r/fffV82aNTV48GDl5eW5lvbt2yswMLDIDY7t27dXgwYNXOstW7aU9MNHJL6+vkXaC+fx+PHjOnLkiEaOHOkaQ+EyYMAAJScnF5mzsvxswB4ENaxw8eJFnT17VsHBwSX2adq0qTZu3Kj69etrwoQJatq0qZo2bao///nPpTpXUFDQdfcNDAwsse3s2bOlOm9pnT17tthaC1+jK89fp04dt/XCty6zs7NLPEd6erqMMaU6T3k5deqUnE6nateuXex2h8OhTZs2qW/fvpo3b57uuusu1atXT0888YQyMzPd+pZ1nqZOnapnnnlG999/v/7zn//os88+065du9SuXTu31+3bb7+95s2G33zzjc6dOydvb295eXm5LSkpKUpLS3Prf+W4vb29r9r+/fffu84jSdOmTStynvHjx0tSkXOV5WcD9uAzalhh3bp1ys/PV/fu3a/a77777tN9992n/Px87d69Wy+//LKio6MVEBCg4cOHX9e5SvO32SkpKSW2Ff7yq1q1qiQpJyfHrd+VvyxLq06dOkpOTi7SXngTUN26dW/o+JJUq1YtVapU6aaf50pnzpxRYmKiIiIiSvx8WpJCQ0P12muvSZK++OIL/fOf/1RMTIxyc3O1ZMkSV7/rmafirFy5Ug8//LBiY2Pd2tPS0lSzZk3Xer169fTVV19ddUyFN2qtX7++2O1+fn5X3f96Fc7HzJkzFRUVVWyfws/W8ePAFTU8LikpSdOmTZO/v7/GjRt3XftUrlxZXbp00SuvvCJJrrc3y/tK4dChQ/r888/d2latWiU/Pz/X3/sW3h27f/9+t35r164tcjyn03ndtfXq1UubN292uztXkv7+97/L19e3XP6UqVq1aurSpYveffddt7oKCgq0cuVKNWzYUM2aNbvh81wuOztbY8eOVV5eXpEb4q6mWbNm+t3vfqc2bdoUeTv7euapOA6Ho8hNU+vWrdOZM2fc2vr3768vvvjCdfNVcQYNGqSzZ88qPz9fnTp1KrKUV3g2b95c4eHh+vzzz4s9T6dOncr0j4LS/Gzi1uKKGrfUwYMHXZ+npaam6uOPP9ayZctUuXJlrVmzpsgd2pdbsmSJNm/erIEDByokJETff/+9Xn/9dUlyfXbo5+en0NBQ/fvf/1avXr1Uu3Zt1a1bt8x/ahIcHKwhQ4YoJiZGQUFBWrlypeLj4/XCCy+4Pkfs3LmzmjdvrmnTpikvL0+1atXSmjVr9MknnxQ5Xps2bfTuu+/q1VdfVceOHVWpUiW3vyu/3OzZs/X++++rR48eevbZZ1W7dm394x//0Lp16zRv3jz5+/uXaUxXmjt3rvr06aMePXpo2rRp8vb21uLFi3Xw4EG9+eabpf52uMslJSVp586dKigo0Pnz57V37169/vrrOnXqlBYsWKDIyMgS992/f78mTpyoBx98UOHh4fL29tbmzZu1f/9+Pf300259r2eeijNo0CAtX75cLVq0UNu2bZWYmKj58+cXeZs7Ojpab731loYOHaqnn35aP/nJT5Sdna2EhAQNGjRIPXr00PDhw/WPf/xDAwYM0OTJk/WTn/xEXl5e+uqrr7RlyxYNHTpUP/vZz8r8Wl7uL3/5i/r376++fftqzJgxatCggb777jsdPnxYe/bs0dtvv13qY7Zp00arV6/WW2+9pSZNmqhq1apq06ZNudSLG+Thm9lwmyi8+7Rw8fb2NvXr1zcREREmNjbWpKamFtnnyjuxd+zYYX72s5+Z0NBQ43Q6TZ06dUxERITb3bDGGLNx40bToUMH43Q6jSQzevRot+N9++231zyXMT/cmTtw4EDzzjvvmDvvvNN4e3ubsLAws3DhwiL7f/HFFyYyMtLUqFHD1KtXz0yaNMmsW7euyF3f3333nXnggQdMzZo1jcPhcDunirlb/cCBA2bw4MHG39/feHt7m3bt2hW5a7nwbum3337brf167nIu9PHHH5uePXuaatWqGR8fH3P33Xeb//znP8UerzR3fRculStXNrVq1TIdO3Y00dHR5tChQ0X2ufKu72+++caMGTPGtGjRwlSrVs1Ur17dtG3b1rz44osmLy/Ptd/1zlNxr0d6erp59NFHTf369Y2vr6+59957zccff2wiIiKK3AGdnp5uJk+ebEJCQoyXl5epX7++GThwoDly5Iirz6VLl8yf/vQn065dO1O1alVTvXp106JFCzNu3Dhz7NixIjVfSZKZMGHCdb3un3/+uXnooYdM/fr1jZeXlwkMDDQ9e/Y0S5YscfUp6a8tivuLhJMnT5rIyEjj5+dnJJX41wm49RzGXOPWSwCwWFhYmFq3bu36shDgx4bPqAEAsBhBDQCAxXjrGwAAi3FFDQCAxQhqAAAsRlADAGAxglo/PBwgIyPjmg8JAADgViOo9cOzZv39/Yt80T8AAJ5GUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLVfF0AT9GSUlJSktL83QZburWrauQkBBPlwEAKCWCupwlJSWpRYuWys7O8nQpbnx8fHXkyGHCGgAqGIK6nKWlpSk7O0tdfjVbNYLCPF2OJCkj+aQ+e32O0tLSCGoAqGAI6pukRlCYaoc093QZAIAKjpvJAACwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMY8G9bZt2zR48GAFBwfL4XDovffec9tujFFMTIyCg4Pl4+Oj7t2769ChQ259cnJyNGnSJNWtW1fVqlXTkCFD9NVXX93CUQAAcPN4NKgvXryodu3aadGiRcVunzdvnhYuXKhFixZp165dCgwMVJ8+fZSZmenqEx0drTVr1mj16tX65JNPdOHCBQ0aNEj5+fm3ahgAANw0VTx58v79+6t///7FbjPGKC4uTrNmzVJUVJQkacWKFQoICNCqVas0btw4nT9/Xq+99preeOMN9e7dW5K0cuVKNWrUSBs3blTfvn1v2VgAALgZrP2M+sSJE0pJSVFkZKSrzel0KiIiQtu3b5ckJSYm6tKlS259goOD1bp1a1ef4uTk5CgjI8NtAQDARtYGdUpKiiQpICDArT0gIMC1LSUlRd7e3qpVq1aJfYozd+5c+fv7u5ZGjRqVc/UAAJQPa4O6kMPhcFs3xhRpu9K1+sycOVPnz593LadPny6XWgEAKG/WBnVgYKAkFbkyTk1NdV1lBwYGKjc3V+np6SX2KY7T6VSNGjXcFgAAbGRtUDdu3FiBgYGKj493teXm5iohIUHdunWTJHXs2FFeXl5ufZKTk3Xw4EFXHwAAKjKP3vV94cIFHT9+3LV+4sQJ7du3T7Vr11ZISIiio6MVGxur8PBwhYeHKzY2Vr6+vhoxYoQkyd/fX48++qiefPJJ1alTR7Vr19a0adPUpk0b113gAABUZB4N6t27d6tHjx6u9alTp0qSRo8ereXLl2v69OnKzs7W+PHjlZ6eri5dumjDhg3y8/Nz7fPiiy+qSpUqeuihh5Sdna1evXpp+fLlqly58i0fDwAA5c1hjDGeLsLTMjIy5O/vr/Pnz9/w59V79uxRx44d1WfWMtUOaV5OFd6Y75KOKv6PjygxMVF33XWXp8sBAJSCtZ9RAwAAghoAAKsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFqvi6QJw6xw+fNjTJRRRt25dhYSEeLoMALAWQX0byD5/VpJDo0aN8nQpRfj4+OrIkcOENQCUgKC+DVzKypRk1H7EDNVr3MLT5bhkJJ/UZ6/PUVpaGkENACUgqG8j1euHqHZIc0+XAQAoBW4mAwDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWMzqoM7Ly9Pvfvc7NW7cWD4+PmrSpImee+45FRQUuPoYYxQTE6Pg4GD5+Pioe/fuOnTokAerBgCg/Fgd1C+88IKWLFmiRYsW6fDhw5o3b57mz5+vl19+2dVn3rx5WrhwoRYtWqRdu3YpMDBQffr0UWZmpgcrBwCgfFgd1Dt27NDQoUM1cOBAhYWF6YEHHlBkZKR2794t6Yer6bi4OM2aNUtRUVFq3bq1VqxYoaysLK1atcrD1QMAcOOsDup7771XmzZt0hdffCFJ+vzzz/XJJ59owIABkqQTJ04oJSVFkZGRrn2cTqciIiK0ffv2Eo+bk5OjjIwMtwUAABtV8XQBVzNjxgydP39eLVq0UOXKlZWfn68//vGP+sUvfiFJSklJkSQFBAS47RcQEKBTp06VeNy5c+dqzpw5N69wAADKidVX1G+99ZZWrlypVatWac+ePVqxYoX+9Kc/acWKFW79HA6H27oxpkjb5WbOnKnz58+7ltOnT9+U+gEAuFFWX1E/9dRTevrppzV8+HBJUps2bXTq1CnNnTtXo0ePVmBgoKQfrqyDgoJc+6Wmpha5yr6c0+mU0+m8ucUDAFAOrL6izsrKUqVK7iVWrlzZ9edZjRs3VmBgoOLj413bc3NzlZCQoG7dut3SWgEAuBmsvqIePHiw/vjHPyokJER33nmn9u7dq4ULF+pXv/qVpB/e8o6OjlZsbKzCw8MVHh6u2NhY+fr6asSIER6uHgCAG2d1UL/88st65plnNH78eKWmpio4OFjjxo3Ts88+6+ozffp0ZWdna/z48UpPT1eXLl20YcMG+fn5ebByAADKh9VB7efnp7i4OMXFxZXYx+FwKCYmRjExMbesLgAAbhWrP6MGAOB2R1ADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxWpqBu0qSJzp49W6T93LlzatKkyQ0XdbkzZ85o1KhRqlOnjnx9fdW+fXslJia6thtjFBMTo+DgYPn4+Kh79+46dOhQudYAAICnlCmoT548qfz8/CLtOTk5OnPmzA0XVSg9PV333HOPvLy89OGHH+q///2vFixYoJo1a7r6zJs3TwsXLtSiRYu0a9cuBQYGqk+fPsrMzCy3OgAA8JQqpem8du1a139/9NFH8vf3d63n5+dr06ZNCgsLK7fiXnjhBTVq1EjLli1ztV1+fGOM4uLiNGvWLEVFRUmSVqxYoYCAAK1atUrjxo0rt1oAAPCEUgX1/fffL0lyOBwaPXq02zYvLy+FhYVpwYIF5Vbc2rVr1bdvXz344INKSEhQgwYNNH78eD322GOSpBMnTiglJUWRkZGufZxOpyIiIrR9+/YSgzonJ0c5OTmu9YyMjHKrGQCA8lSqt74LCgpUUFCgkJAQpaamutYLCgqUk5Ojo0ePatCgQeVW3JdffqlXX31V4eHh+uijj/T444/riSee0N///ndJUkpKiiQpICDAbb+AgADXtuLMnTtX/v7+rqVRo0blVjMAAOWpVFfUhU6cOFHedRSroKBAnTp1UmxsrCSpQ4cOOnTokF599VU9/PDDrn4Oh8NtP2NMkbbLzZw5U1OnTnWtZ2RkENYAACuVKagladOmTdq0aZPryvpyr7/++g0XJklBQUFq1aqVW1vLli31r3/9S5IUGBgo6Ycr66CgIFef1NTUIlfZl3M6nXI6neVSIwAAN1OZ7vqeM2eOIiMjtWnTJqWlpSk9Pd1tKS/33HOPjh496tb2xRdfKDQ0VJLUuHFjBQYGKj4+3rU9NzdXCQkJ6tatW7nVAQCAp5TpinrJkiVavny5fvnLX5Z3PW6mTJmibt26KTY2Vg899JD+3//7f1q6dKmWLl0q6Ye3vKOjoxUbG6vw8HCFh4crNjZWvr6+GjFixE2tDQCAW6FMQZ2bm3tLrlg7d+6sNWvWaObMmXruuefUuHFjxcXFaeTIka4+06dPV3Z2tsaPH6/09HR16dJFGzZskJ+f302vDwCAm61MQT127FitWrVKzzzzTHnXU8SgQYOueie5w+FQTEyMYmJibnotAADcamUK6u+//15Lly7Vxo0b1bZtW3l5ebltX7hwYbkUBwDA7a5MQb1//361b99eknTw4EG3bVf7sygAAFA6ZQrqLVu2lHcdAACgGGX+O2oAt1ZSUpLS0tI8XUYRdevWVUhIiKfLAH60yhTUPXr0uOpb3Js3by5zQQCKSkpKUosWLZWdneXpUorw8fHVkSOHCWvgJilTUBd+Pl3o0qVL2rdvnw4ePFjkYR0AblxaWpqys7PU5VezVSMozNPluGQkn9Rnr89RWloaQQ3cJGUK6hdffLHY9piYGF24cOGGCgJQshpBYaod0tzTZQC4hcr0FaIlGTVqVLl9zzcAACjnoN6xY4eqVq1anocEAOC2Vqa3vqOiotzWjTFKTk7W7t27b8m3lQEAcLsoU1D7+/u7rVeqVEnNmzfXc889p8jIyHIpDAAAlDGoly1bVt51AACAYtzQF54kJibq8OHDcjgcatWqlTp06FBedQEAAJUxqFNTUzV8+HBt3bpVNWvWlDFG58+fV48ePbR69WrVq1evvOsEAOC2VKa7vidNmqSMjAwdOnRI3333ndLT03Xw4EFlZGToiSeeKO8aAQC4bZXpinr9+vXauHGjWrZs6Wpr1aqVXnnlFW4mAwCgHJXpirqgoKDIM6glycvLSwUFBTdcFAAA+EGZgrpnz56aPHmyvv76a1fbmTNnNGXKFPXq1avcigMA4HZXpqBetGiRMjMzFRYWpqZNm+qOO+5Q48aNlZmZqZdffrm8awQA4LZVps+oGzVqpD179ig+Pl5HjhyRMUatWrVS7969y7s+AABua6W6ot68ebNatWqljIwMSVKfPn00adIkPfHEE+rcubPuvPNOffzxxzelUAAAbkelCuq4uDg99thjqlGjRpFt/v7+GjdunBYuXFhuxQEAcLsrVVB//vnn6tevX4nbIyMjlZiYeMNFAQCAH5QqqL/55pti/yyrUJUqVfTtt9/ecFEAAOAHpQrqBg0a6MCBAyVu379/v4KCgm64KAAA8INSBfWAAQP07LPP6vvvvy+yLTs7W7Nnz9agQYPKrTgAAG53pfrzrN/97nd699131axZM02cOFHNmzeXw+HQ4cOH9corryg/P1+zZs26WbUCAHDbKVVQBwQEaPv27frNb36jmTNnyhgjSXI4HOrbt68WL16sgICAm1IoAAC3o1J/4UloaKg++OADpaen6/jx4zLGKDw8XLVq1boZ9QEAcFsr0zeTSVKtWrXUuXPn8qwFAABcoUzf9Q0AAG4NghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALBYFU8XAAA3Q1JSktLS0jxdhpu6desqJCTE02WggiGoAfzoJCUlqUWLlsrOzvJ0KW58fHx15MhhwhqlQlAD+NFJS0tTdnaWuvxqtmoEhXm6HElSRvJJffb6HKWlpRHUKBWCGsCPVo2gMNUOae7pMoAbws1kAABYrEIF9dy5c+VwOBQdHe1qM8YoJiZGwcHB8vHxUffu3XXo0CHPFQkAQDmqMEG9a9cuLV26VG3btnVrnzdvnhYuXKhFixZp165dCgwMVJ8+fZSZmemhSgEAKD8VIqgvXLigkSNH6q9//atq1arlajfGKC4uTrNmzVJUVJRat26tFStWKCsrS6tWrfJgxQAAlI8KEdQTJkzQwIED1bt3b7f2EydOKCUlRZGRka42p9OpiIgIbd++vcTj5eTkKCMjw20BAMBG1t/1vXr1au3Zs0e7du0qsi0lJUWSFBAQ4NYeEBCgU6dOlXjMuXPnas6cOeVbKAAAN4HVV9SnT5/W5MmTtXLlSlWtWrXEfg6Hw23dGFOk7XIzZ87U+fPnXcvp06fLrWYAAMqT1VfUiYmJSk1NVceOHV1t+fn52rZtmxYtWqSjR49K+uHKOigoyNUnNTW1yFX25ZxOp5xO580rHACAcmL1FXWvXr104MAB7du3z7V06tRJI0eO1L59+9SkSRMFBgYqPj7etU9ubq4SEhLUrVs3D1YOAED5sPqK2s/PT61bt3Zrq1atmurUqeNqj46OVmxsrMLDwxUeHq7Y2Fj5+vpqxIgRnigZAIByZXVQX4/p06crOztb48ePV3p6urp06aINGzbIz8/P06UBAHDDKlxQb9261W3d4XAoJiZGMTExHqkHAICbyerPqAEAuN0R1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWKyKpwsADh8+7OkSiqhbt65CQkI8XQZ+hPh5R2kR1PCY7PNnJTk0atQoT5dShI+Pr44cOcwvL5Qbft5RVgQ1POZSVqYko/YjZqhe4xaeLsclI/mkPnt9jtLS0vjFhXLDzzvKiqCGx1WvH6LaIc09XQZwS/DzjtLiZjIAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAItZHdRz585V586d5efnp/r16+v+++/X0aNH3foYYxQTE6Pg4GD5+Pioe/fuOnTokIcqBgCgfFkd1AkJCZowYYJ27typ+Ph45eXlKTIyUhcvXnT1mTdvnhYuXKhFixZp165dCgwMVJ8+fZSZmenBygEAKB9VPF3A1axfv95tfdmyZapfv74SExP105/+VMYYxcXFadasWYqKipIkrVixQgEBAVq1apXGjRvnibIBACg3Vl9RX+n8+fOSpNq1a0uSTpw4oZSUFEVGRrr6OJ1ORUREaPv27SUeJycnRxkZGW4LAAA2qjBBbYzR1KlTde+996p169aSpJSUFElSQECAW9+AgADXtuLMnTtX/v7+rqVRo0Y3r3AAAG5AhQnqiRMnav/+/XrzzTeLbHM4HG7rxpgibZebOXOmzp8/71pOnz5d7vUCAFAerP6MutCkSZO0du1abdu2TQ0bNnS1BwYGSvrhyjooKMjVnpqaWuQq+3JOp1NOp/PmFQwAQDmx+oraGKOJEyfq3Xff1ebNm9W4cWO37Y0bN1ZgYKDi4+Ndbbm5uUpISFC3bt1udbkAAJQ7q6+oJ0yYoFWrVunf//63/Pz8XJ87+/v7y8fHRw6HQ9HR0YqNjVV4eLjCw8MVGxsrX19fjRgxwsPVAwBw46wO6ldffVWS1L17d7f2ZcuWacyYMZKk6dOnKzs7W+PHj1d6erq6dOmiDRs2yM/P7xZXCwBA+bM6qI0x1+zjcDgUExOjmJiYm18QAAC3mNWfUQMAcLsjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWMzqv6MGANwahw8f9nQJRdStW1chISGeLsPjCGoAuI1lnz8ryaFRo0Z5upQifHx8deTI4ds+rAlqALiNXcrKlGTUfsQM1WvcwtPluGQkn9Rnr89RWloaQe3pAgAAnle9fohqhzT3dBkoBjeTAQBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDF+DtqoAQ2faWiTbUAuLUIauAKNn+l4qWcXE+XAOAWI6iBK9j4lYrJB3bo4NqlysvL83QpAG4xghoogU1fqZiRfNLTJQDwEG4mAwDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFeCgHAMBatj2LvW7dugoJCbml5ySoAQDWsfW58D4+vjpy5PAtDWuCGgBgHRufC5+RfFKfvT5HaWlpBDUAAJJdz4X3FG4mAwDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABar4ukCAFR8hw8f9nQJbmyrB7gRBDWAMss+f1aSQ6NGjfJ0KcW6lJPr6RKAG0ZQAyizS1mZkozaj5iheo1beLocl+QDO3Rw7VLl5eV5uhTghhHUAG5Y9fohqh3S3NNluGQkn/R0CUC54WYyAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYj+aoF68eLEaN26sqlWrqmPHjvr44489XRIAADfsRxHUb731lqKjozVr1izt3btX9913n/r376+kpCRPlwYAwA35UQT1woUL9eijj2rs2LFq2bKl4uLi1KhRI7366queLg0AgBtS4b/wJDc3V4mJiXr66afd2iMjI7V9+/Zi98nJyVFOTo5r/fz585KkjIyMG67nwoULkqTvTh1VXk72DR+vPGQkn5IknT9zTF5VHB6u5v9Q1/WzsSaJukrDxpok6iqNjJQf3qW9cOFCueSFJPn5+cnhuMb4TAV35swZI8l8+umnbu1//OMfTbNmzYrdZ/bs2UYSCwsLCwuLR5fz589fM+cq/BV1oSv/RWKMKfFfKTNnztTUqVNd6wUFBTp16pTat2+v06dPq0aNGje11pslIyNDjRo1qrBjqOj1S4zBBhW9fokx2OBW1e/n53fNPhU+qOvWravKlSsrJSXFrT01NVUBAQHF7uN0OuV0Ot3aKlX64eP6GjVqVMgfqstV9DFU9PolxmCDil6/xBhsYEP9Ff5mMm9vb3Xs2FHx8fFu7fHx8erWrZuHqgIAoHxU+CtqSZo6dap++ctfqlOnTuratauWLl2qpKQkPf74454uDQCAG/KjCOphw4bp7Nmzeu6555ScnKzWrVvrgw8+UGho6HUfw+l0avbs2UXeEq9IKvoYKnr9EmOwQUWvX2IMNrCpfocxxni6CAAAULwK/xk1AAA/ZgQ1AAAWI6gBALAYQQ0AgMVuq6COiYmRw+FwWwIDA13bjTGKiYlRcHCwfHx81L17dx06dMiDFUvbtm3T4MGDFRwcLIfDoffee89t+/XUnJOTo0mTJqlu3bqqVq2ahgwZoq+++sqaMYwZM6bIvNx9993WjGHu3Lnq3Lmz/Pz8VL9+fd1///06evSoWx+b5+F66rd9Dl599VW1bdvW9eUTXbt21YcffujabvPrf71jsH0OrjR37lw5HA5FR0e72irCPFyuuDHYOA+3VVBL0p133qnk5GTXcuDAAde2efPmaeHChVq0aJF27dqlwMBA9enTR5mZmR6r9+LFi2rXrp0WLVpU7PbrqTk6Olpr1qzR6tWr9cknn+jChQsaNGiQ8vPzrRiDJPXr189tXj744AO37Z4cQ0JCgiZMmKCdO3cqPj5eeXl5ioyM1MWLF119bJ6H66lfsnsOGjZsqOeff167d+/W7t271bNnTw0dOtQVAja//tc7BsnuObjcrl27tHTpUrVt29atvSLMw7XGIFk4Dzf0RIwKZvbs2aZdu3bFbisoKDCBgYHm+eefd7V9//33xt/f3yxZsuQWVXh1ksyaNWtc69dT87lz54yXl5dZvXq1q8+ZM2dMpUqVzPr1629Z7YWuHIMxxowePdoMHTq0xH1sG0NqaqqRZBISEowxFW8erqzfmIo3B8YYU6tWLfO3v/2twr3+lyscgzEVZw4yMzNNeHi4iY+PNxEREWby5MnGmIr1/0FJYzDGznm47a6ojx07puDgYDVu3FjDhw/Xl19+KUk6ceKEUlJSFBkZ6errdDoVERFR4uMyPe16ak5MTNSlS5fc+gQHB6t169ZWjWvr1q2qX7++mjVrpscee0ypqamubbaNofCxqLVr15ZU8ebhyvoLVZQ5yM/P1+rVq3Xx4kV17dq1wr3+xY2hUEWYgwkTJmjgwIHq3bu3W3tFmoeSxlDItnn4UXwz2fXq0qWL/v73v6tZs2b65ptv9Ic//EHdunXToUOHXA/1uPJBHgEBATp16pQnyr2m66k5JSVF3t7eqlWrVpE+Vz7IxFP69++vBx98UKGhoTpx4oSeeeYZ9ezZU4mJiXI6nVaNwRijqVOn6t5771Xr1q0lVax5KK5+qWLMwYEDB9S1a1d9//33ql69utasWaNWrVq5fjlWhNe/pDFIFWMOVq9erT179mjXrl1FtlWU/w+uNgbJznm4rYK6f//+rv9u06aNunbtqqZNm2rFihWumwVK87hMW5SlZpvGNWzYMNd/t27dWp06dVJoaKjWrVunqKioEvfzxBgmTpyo/fv365NPPimyrSLMQ0n1V4Q5aN68ufbt26dz587pX//6l0aPHq2EhATX9orw+pc0hlatWlk/B6dPn9bkyZO1YcMGVa1atcR+Ns/D9YzBxnm47d76vly1atXUpk0bHTt2zHX3d2kel+lp11NzYGCgcnNzlZ6eXmIf2wQFBSk0NFTHjh2TZM8YJk2apLVr12rLli1q2LChq72izENJ9RfHxjnw9vbWHXfcoU6dOmnu3Llq166d/vznP1eY118qeQzFsW0OEhMTlZqaqo4dO6pKlSqqUqWKEhIS9NJLL6lKlSquGmyeh2uNobibwWyYh9s6qHNycnT48GEFBQWpcePGCgwMdHtcZm5urhISEqx9XOb11NyxY0d5eXm59UlOTtbBgwetHdfZs2d1+vRpBQUFSfL8GIwxmjhxot59911t3rxZjRs3dttu+zxcq/7i2DYHxTHGKCcnx/rX/2oKx1Ac2+agV69eOnDggPbt2+daOnXqpJEjR2rfvn1q0qSJ9fNwrTFUrly5yD5WzMNNuUXNUk8++aTZunWr+fLLL83OnTvNoEGDjJ+fnzl58qQxxpjnn3/e+Pv7m3fffdccOHDA/OIXvzBBQUEmIyPDYzVnZmaavXv3mr179xpJZuHChWbv3r3m1KlT113z448/bho2bGg2btxo9uzZY3r27GnatWtn8vLyPD6GzMxM8+STT5rt27ebEydOmC1btpiuXbuaBg0aWDOG3/zmN8bf399s3brVJCcnu5asrCxXH5vn4Vr1V4Q5mDlzptm2bZs5ceKE2b9/v/ntb39rKlWqZDZs2GCMsfv1v54xVIQ5KM6Vd0xXhHm40uVjsHUebqugHjZsmAkKCjJeXl4mODjYREVFmUOHDrm2FxQUmNmzZ5vAwEDjdDrNT3/6U3PgwAEPVmzMli1bjKQiy+jRo6+75uzsbDNx4kRTu3Zt4+PjYwYNGmSSkpKsGENWVpaJjIw09erVM15eXiYkJMSMHj26SH2eHENxtUsyy5Ytc/WxeR6uVX9FmINf/epXJjQ01Hh7e5t69eqZXr16uULaGLtf/+sZQ0WYg+JcGdQVYR6udPkYbJ0HHnMJAIDFbuvPqAEAsB1BDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1YLnu3bsrOjpakhQWFqa4uLhyO7bD4dB7771XbscDUP5uq6dnARXdrl27VK1aNU+XUSGNGTNG586d4x8mqHAIaqACqVevnqdLAHCL8dY3YJGLFy/q4YcfVvXq1RUUFKQFCxa4bb/yre+YmBiFhITI6XQqODhYTzzxhFvf3//+9xoxYoSqV6+u4OBgvfzyy1c9/4wZM9SsWTP5+vqqSZMmeuaZZ3Tp0iW3PmvXrlWnTp1UtWpV1a1b1+0Zvbm5uZo+fboaNGigatWqqUuXLtq6datr+/Lly1WzZk29//77at68uXx9ffXAAw/o4sWLWrFihcLCwlSrVi1NmjTJ7ZGD13vcjz76SC1btlT16tXVr18/JScnu16nFStW6N///rccDoccDofb/oDNCGrAIk899ZS2bNmiNWvWaMOGDdq6dasSExOL7fvOO+/oxRdf1F/+8hcdO3ZM7733ntq0aePWZ/78+Wrbtq327NmjmTNnasqUKW6P57uSn5+fli9frv/+97/685//rL/+9a968cUXXdvXrVunqKgoDRw4UHv37tWmTZvUqVMn1/ZHHnlEn376qVavXq39+/frwQcfVL9+/VzP8pWkrKwsvfTSS1q9erXWr1+vrVu3KioqSh988IE++OADvfHGG1q6dKneeeedUh/3T3/6k9544w1t27ZNSUlJmjZtmiRp2rRpeuihh1zhnZycbO1jXoEibtrjPgCUSmZmpvH29jarV692tZ09e9b4+Pi4nu4TGhpqXnzxRWOMMQsWLDDNmjUzubm5xR4vNDTU9OvXz61t2LBhpn///q51SWbNmjUl1jRv3jzTsWNH13rXrl3NyJEji+17/Phx43A4zJkzZ9zae/XqZWbOnGmMMWbZsmVGkjl+/Lhr+7hx44yvr6/JzMx0tfXt29eMGzfuho77yiuvmICAANf66NGjzdChQ0scK2ArPqMGLPG///1Pubm56tq1q6utdu3aat68ebH9H3zwQcXFxalJkybq16+fBgwYoMGDB6tKlf/73/ryYxWuX+2u8XfeeUdxcXE6fvy4Lly4oLy8PNWoUcO1fd++fXrssceK3XfPnj0yxqhZs2Zu7Tk5OapTp45r3dfXV02bNnWtBwQEKCwsTNWrV3drS01NvaHjBgUFuY4BVGQENWAJU8onzjZq1EhHjx5VfHy8Nm7cqPHjx2v+/PlKSEiQl5dXifs5HI5i23fu3Knhw4drzpw56tu3r/z9/bV69Wq3z8l9fHxKPG5BQYEqV66sxMREVa5c2W3b5SF8ZW0Oh6PYtoKCghs+bmlfU8BGBDVgiTvuuENeXl7auXOnQkJCJEnp6en64osvFBERUew+Pj4+GjJkiIYMGaIJEyaoRYsWOnDggO666y5JP4Tv5Xbu3KkWLVoUe6xPP/1UoaGhmjVrlqvt1KlTbn3atm2rTZs26ZFHHimyf4cOHZSfn6/U1FTdd9991z/wayiv43p7e7vdoAZUFAQ1YInq1avr0Ucf1VNPPaU6deooICBAs2bNUqVKxd/zuXz5cuXn56tLly7y9fXVG2+8IR8fH4WGhrr6fPrpp5o3b57uv/9+xcfH6+2339a6deuKPd4dd9yhpKQkrV69Wp07d9a6deu0Zs0atz6zZ89Wr1691LRpUw0fPlx5eXn68MMPNX36dDVr1kwjR47Uww8/rAULFqhDhw5KS0vT5s2b1aZNGw0YMKBMr0t5HTcsLEwfffSRjh49qjp16sjf3/+q7zwAtuCub8Ai8+fP109/+lMNGTJEvXv31r333quOHTsW27dmzZr661//qnvuucd1pfuf//zH7XPbJ598UomJierQoYN+//vfa8GCBerbt2+xxxs6dKimTJmiiRMnqn379tq+fbueeeYZtz7du3fX22+/rbVr16p9+/bq2bOnPvvsM9f2ZcuW6eGHH9aTTz6p5s2ba8iQIfrss8/UqFGjG3pdyuO4jz32mJo3b65OnTqpXr16+vTTT2+oJuBWcRg+xAF+lMLCwhQdHe36+lEAFRNX1AAAWIygBgDAYrz1DQCAxbiiBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGL/H7vGIfJXvEvZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.displot(x=df.displacement)\n", + "plt.title('Distribution of Displacement')\n", + "plt.show();" + ] + }, + { + "cell_type": "markdown", + "id": "3235dc9c-d7d4-4795-8fd2-1d208be182c7", + "metadata": {}, + "source": [ + "Most engines in the data are smaller since most of our engines are 4 cylinders. The 3 groups seen here are the split between 4, 6, and 8 cylinders because they all come in generally the same sizes for automotive applications" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "b7b4c6b4-c46c-4f61-9e2a-1243ccc39d0a", + "metadata": { + "execution": { + "iopub.execute_input": "2022-08-01T00:19:01.041100Z", + "iopub.status.busy": "2022-08-01T00:19:01.040804Z", + "iopub.status.idle": "2022-08-01T00:19:01.123396Z", + "shell.execute_reply": "2022-08-01T00:19:01.122989Z", + "shell.execute_reply.started": "2022-08-01T00:19:01.041075Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAAHFCAYAAAB8VbqXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmjklEQVR4nO3deXSV9Z3H8c8NSW42iAQCSQSSIA0iEGGI2ogtCFZ2tAyi1Qq4HUQWQdRKGQdwGVE2Fyy21iLSGcJIAREImyzWBYosA6JFqGxTNmVEAphAku/80ZOnXJL8WBK4yeX9Oifn5D7Pc5/7+92f8b65S+IzMxMAAEA5woI9AAAAULURCwAAwIlYAAAATsQCAABwIhYAAIATsQAAAJyIBQAA4EQsAAAAJ2IBAAA4EQuoUt5++235fL6Ar8TERLVv314LFiwI9vA8aWlp6t+//3lf78SJExozZoxWrVpV6WPatWuXunXrpoSEBPl8Pg0bNqzcY9PS0rz7NywsTPHx8WrWrJn69u2rpUuXlnkdn8+nMWPGVPq4Tx/Thdynl4NFixZd1PseOJvwYA8AKMu0adN09dVXy8x04MABTZkyRT169ND8+fPVo0ePYA/vgp04cUJjx46VJLVv375Szz18+HCtXbtWf/jDH5SUlKTk5GTn8W3bttWECRMkSceOHdO2bduUk5OjTp066V//9V81c+ZMRUREeMd/+umnatCgQaWOGedm0aJFev311wkGBA2xgCqpRYsWysrK8i537txZtWvX1syZM6t1LFxMn3/+ua6//nrdfvvt53T8FVdcoR//+Mfe5VtuuUWDBg3SmDFjNHbsWP3bv/2bXnzxRW//6ccCuLzwMgSqhaioKEVGRgb8S1eS/u///k+PPPKIrrzySkVGRqpx48YaNWqUCgoKJEn5+flq3bq1mjRpou+//9673oEDB5SUlKT27durqKhIktS/f3/FxcVp69at6tixo2JjY5WYmKjBgwfrxIkTZx3jnj179Mtf/lL16tWT3+9Xs2bNNHHiRBUXF0v6x8sEiYmJkqSxY8d6LwOc7an3s5131apV8vl82rFjh3Jzc73z7tq165zu2zONGTNGzZs315QpU5Sfn+9tP/NliBMnTujxxx9Xenq6oqKilJCQoKysLM2cOdM7piL3aX5+vkaMGKFWrVopPj5eCQkJys7O1nvvvVfq2OLiYr322mtq1aqVoqOjvRCaP39+wHGzZs1Sdna2YmNjFRcXp06dOmnjxo0Bx5SM+a9//as6deqk2NhYJScna9y4cZKkNWvW6KabblJsbKwyMjI0ffr0UuM5cOCABgwYoAYNGigyMlLp6ekaO3asCgsLvWN27doln8+nCRMmaNKkSUpPT1dcXJyys7O1Zs2agPG8/vrr3hpUdH2BC2JAFTJt2jSTZGvWrLFTp07ZyZMnbe/evTZ06FALCwuzxYsXe8f+8MMPlpmZabGxsTZhwgRbunSpPf300xYeHm5du3b1jvvqq6+sZs2a1qtXLzMzKyoqsg4dOli9evVs37593nH9+vWzyMhIa9SokT3//PO2dOlSGzNmjIWHh1v37t0Dxpmammr9+vXzLh86dMiuvPJKS0xMtDfeeMMWL15sgwcPNkk2cOBAMzPLz8+3xYsXmyR74IEH7NNPP7VPP/3UduzYUe79cS7n/f777+3TTz+1pKQka9u2rXfe/Pz8cs+bmppq3bp1K3f/U089ZZLsz3/+s7dNko0ePdq7PGDAAIuJibFJkybZypUrbcGCBTZu3Dh77bXXKuU+PXLkiPXv399mzJhhK1assMWLF9vjjz9uYWFhNn369IDr3nvvvebz+ezBBx+09957z3Jzc+3555+3V155xTvm+eefN5/PZ/fff78tWLDA5syZY9nZ2RYbG2tbt24tNeZmzZrZK6+8YsuWLbP77rvPJNnIkSMtIyPD3nrrLVuyZIl1797dJNlnn33mXX///v3WsGFDS01Ntd/+9re2fPlye/bZZ83v91v//v2943bu3GmSLC0tzTp37mzz5s2zefPmWcuWLa127dp25MgRMzPbsWOH9e7d2yR5a3u29QUqG7GAKqUkFs788vv99pvf/Cbg2DfeeMMk2X//938HbH/xxRdNki1dutTbNmvWLJNkL7/8sv37v/+7hYWFBew3+8eDhKSABxizfzzISLKPPvrI23bmA1vJg+vatWsDrjtw4EDz+Xy2bds2MzP75ptvSj3oupzreUvG5AqA053t2KlTp5okmzVrlrftzHG3aNHCbr/9duftVOQ+PVNhYaGdOnXKHnjgAWvdurW3/cMPPzRJNmrUqHKvu2fPHgsPD7chQ4YEbM/Ly7OkpCTr06dPqTH/6U9/8radOnXKEhMTTZJt2LDB23748GGrUaOGPfbYY962AQMGWFxcnO3evTvgtiZMmGCSvDApiYWWLVtaYWGhd9xf/vIXk2QzZ870tg0aNMj4tx2CiZchUCW98847WrdundatW6fc3Fz169dPgwYN0pQpU7xjVqxYodjYWPXu3TvguiVP63/wwQfetj59+mjgwIF64okn9Nxzz+nXv/61fvazn5V52/fcc0/A5bvvvluStHLlynLHu2LFCl1zzTW6/vrrS43FzLRixYqzT/oSnvdszOysx1x//fXKzc3VU089pVWrVumHH34o99gLuU8l6d1331Xbtm0VFxen8PBwRURE6K233tKXX37pHZObmytJGjRoULnnWbJkiQoLC9W3b18VFhZ6X1FRUWrXrl2pT6f4fD517drVuxweHq4mTZooOTlZrVu39rYnJCSoXr162r17t7dtwYIFuvnmm5WSkhJwW126dJEkrV69OuC2unXrpho1aniXMzMzJSngnECw8QZHVEnNmjUr9QbH3bt368knn9Qvf/lLXXHFFTp8+LCSkpLk8/kCrluvXj2Fh4fr8OHDAdvvv/9+TZ06VZGRkRo6dGiZtxseHq46deoEbEtKSpKkUuc73eHDh5WWllZqe0pKylmv63Kxzns2JQ9UJbdTlldffVUNGjTQrFmz9OKLLyoqKkqdOnXS+PHj9aMf/cg77kLv0zlz5qhPnz6644479MQTTygpKUnh4eGaOnWq/vCHP3jHffPNN6pRo4Z3zrIcPHhQknTdddeVuT8sLPDfTTExMYqKigrYFhkZqYSEhFLXjYyMDHhvx8GDB/X++++Xen9NiW+//Tbg8pn3jd/vlyRnfAGXGrGAaiMzM1NLlizRV199peuvv1516tTR2rVrZWYBwXDo0CEVFhaqbt263rbjx4/r3nvvVUZGhg4ePKgHH3ywzDfKFRYW6vDhwwH/Az9w4ICk0v9TP12dOnW0f//+Utv37dsnSQFjOR8X67wuZqb3339fsbGxAcF2ptjYWI0dO1Zjx47VwYMHvWcZevToob/+9a/ecRd6n/7xj39Uenq6Zs2aFbC+JW9eLZGYmKiioiIdOHCg3I+LltxPs2fPVmpqqmP2FVe3bl1lZmbq+eefL3O/K8CAqoqXIVBtbNq0SZK8TxR07NhRx44d07x58wKOe+edd7z9JR5++GHt2bNHc+bM0VtvvaX58+dr8uTJZd7Of/7nfwZc/q//+i9J7t+L0LFjR33xxRfasGFDqbH4fD7dfPPNks7/X43net7KNHbsWH3xxRd69NFHS/3rujz169dX//799Ytf/ELbtm0r9UmHC7lPfT6fIiMjA0LhwIEDpSKv5On9qVOnlnuuTp06KTw8XH/729+UlZVV5ldl6d69uz7//HNdddVVZd7OhcQCzzYg2HhmAVXS559/7n3M7PDhw5ozZ46WLVumn//850pPT5ck9e3bV6+//rr69eunXbt2qWXLlvroo4/0H//xH+ratatuueUWSdLvf/97/fGPf9S0adPUvHlzNW/eXIMHD9avfvUrtW3bNuD9AJGRkZo4caKOHTum6667Tp988omee+45denSRTfddFO54x0+fLjeeecddevWTc8884xSU1O1cOFC/eY3v9HAgQOVkZEhSapZs6ZSU1P13nvvqWPHjkpISFDdunXLfKnhfM57IY4cOeJ9RO/48ePeL2X685//rD59+ni/PKo8N9xwg7p3767MzEzVrl1bX375pWbMmKHs7GzFxMR4x13ofdq9e3fNmTNHjzzyiHr37q29e/fq2WefVXJysrZv3+4d95Of/ET33nuvnnvuOR08eFDdu3eX3+/Xxo0bFRMToyFDhigtLU3PPPOMRo0apa+//tr7vR0HDx7UX/7yF+9ZksrwzDPPaNmyZbrxxhs1dOhQNW3aVPn5+dq1a5cWLVqkN95447x/uVXLli0lSS+++KK6dOmiGjVqKDMzU5GRkZUyZuCsgvr2SuAMZX0aIj4+3lq1amWTJk0q9XGxw4cP28MPP2zJyckWHh5uqampNnLkSO+4zZs3W3R0dKl32efn51ubNm0sLS3NvvvuOzP7x7vgY2NjbfPmzda+fXuLjo62hIQEGzhwoB07dizg+mW9c3/37t129913W506dSwiIsKaNm1q48ePt6KiooDjli9fbq1btza/32+SnJ8AOJ/znu+nIUruX5/PZ3Fxcda0aVO79957bcmSJWVeR2d8GuKpp56yrKwsq127tvn9fmvcuLENHz7cvv32W++Yit6n48aNs7S0NPP7/dasWTN78803bfTo0aU+GVBUVGSTJ0+2Fi1aWGRkpMXHx1t2dra9//77AcfNmzfPbr75ZqtVq5b5/X5LTU213r172/Lly0uN+Uzt2rWz5s2bl3lfnnm/f/PNNzZ06FBLT0+3iIgIS0hIsDZt2tioUaO8eZd8GmL8+PFnva8LCgrswQcftMTERPP5fCbJdu7cWep6wMXiMzuHtz0Dl4H+/ftr9uzZOnbsWLCHEjK4T4HQwHsWAACAE7EAAACceBkCAAA48cwCAABwIhYAAIATsQAAAJwq/EuZiouLtW/fPtWsWbPU7+gHAABVk5kpLy9PKSkppf4+ypkqHAv79u1Tw4YNK3oaAAAQBHv37j3rbxWtcCzUrFnTu7FatWpV9HQAAOASOHr0qBo2bOg9jrtUOBZKXnqoVasWsQAAQDVzLm8h4A2OAADAiVgAAABOxAIAAHAiFgAAgBOxAAAAnIgFAADgRCwAAAAnYgEAADgRCwAAwIlYAAAATsQCAABwIhYAAIATsQAAAJyIBQAA4EQsAAAAJ2IBAAA4EQsAAMCJWAAAAE7EAgAAcCIWAACAE7EAAACciAUAAOBELAAAACdiAQAAOBELAADAiVgAAABOxAIAAHAiFgAAgBOxAAAAnIgFAADgRCwAAAAnYgEAADiFB3sA1Z2ZKT8/P9jDuCjMTAUFBZIkv98vn88X5BEhmKKiovhvALhMEQsVlJ+fry5dugR7GMBFl5ubq+jo6GAPA0AQ8DIEAABw4pmFSnSs1S9kYSF0lxadUs3/yZEk5V17l1QjIsgDwqXmKy5U3KaZwR4GgCALoUe24LOw8NB9QK0REbpzQ7ks2AMAUCXwMgQAAHAiFgAAgBOxAAAAnIgFAADgRCwAAAAnYgEAADgRCwAAwIlYAAAATsQCAABwIhYAAIATsQAAAJyIBQAA4EQsAAAAJ2IBAAA4EQsAAMCJWAAAAE7EAgAAcCIWAACAE7EAAACciAUAAOBELAAAACdiAQAAOBELAADAiVgAAABOxAIAAHAiFgAAgBOxAAAAnIgFAADgRCwAAAAnYgEAADgRCwAAwIlYAAAATsQCAABwIhYAAIATsQAAAJyIBQAA4EQsAAAAJ2IBAAA4EQsAAMCJWAAAAE7EAgAAcCIWAACAE7EAAACciAUAAOBELAAAACdiAQAAOBELAADAiVgAAABOxAIAAHAiFgAAgBOxAAAAnIgFAADgRCwAAAAnYgEAADgRCwAAwIlYAAAATsQCAABwIhYAAIATsQAAAJyIBQAA4EQsAAAAJ2IBAAA4EQsAAMCJWAAAAE7EAgAAcCIWAACAE7EAAACciAUAAOBELAAAAKfwYA+gPGam/Px8SVJUVJR8Pl+QRwQAwKVVVR4Lq+wzC/n5+erSpYu6dOni3VEAAFxOqspjYZWNBQAAUDUQCwAAwIlYAAAATsQCAABwIhYAAIATsQAAAJyIBQAA4EQsAAAAJ2IBAAA4EQsAAMCJWAAAAE7EAgAAcCIWAACAE7EAAACciAUAAOBELAAAACdiAQAAOBELAADAiVgAAABOxAIAAHAiFgAAgBOxAAAAnIgFAADgRCwAAAAnYgEAADgRCwAAwIlYAAAATsQCAABwIhYAAIATsQAAAJyIBQAA4EQsAAAAJ2IBAAA4EQsAAMCJWAAAAE7EAgAAcCIWAACAE7EAAACciAUAAOBELAAAACdiAQAAOBELAADAiVgAAABOxAIAAHAiFgAAgBOxAAAAnIgFAADgRCwAAAAnYgEAADgRCwAAwIlYAAAATsQCAABwIhYAAIATsQAAAJyIBQAA4EQsAAAAJ2IBAAA4EQsAAMCJWAAAAE7EAgAAcCIWAACAE7EAAACciAUAAOBELAAAACdiAQAAOBELAADAiVgAAABOxAIAAHAiFgAAgBOxAAAAnIgFAADgRCwAAACn8GAPoDxm5n2fn58fxJG4BYzttDEDIaGa/BwCoer0nzsL4mPMecdCQUGBCgoKvMtHjx6t1AGdfjslfv7zn1+U26h0xYWSIoM9CqDyFBd631abn0MgRBUUFCgmJiYot33eL0O88MILio+P974aNmx4McYFAACqiPN+ZmHkyJF67LHHvMtHjx69KMHg9/u97+fOnauoqKhKv43KkJ+f/89/cYVV2Vd1gAtz2n/TVfnnEAhVpz/GnP64eKmd96Ob3++/JAP2+Xze91FRUYqOjr7ot1lhp40ZCAnV8ecQCFG+ID7G8GkIAADgRCwAAAAnYgEAADgRCwAAwIlYAAAATsQCAABwIhYAAIATsQAAAJyIBQAA4EQsAAAAJ2IBAAA4EQsAAMCJWAAAAE7EAgAAcCIWAACAE7EAAACciAUAAOBELAAAACdiAQAAOBELAADAiVgAAABOxAIAAHAiFgAAgBOxAAAAnIgFAADgRCwAAAAnYgEAADgRCwAAwIlYAAAATsQCAABwIhYAAIATsQAAAJyIBQAA4EQsAAAAJ2IBAAA4EQsAAMCJWAAAAE7EAgAAcCIWAACAE7EAAACciAUAAOBELAAAACdiAQAAOBELAADAiVgAAABOxAIAAHAiFgAAgBOxAAAAnIgFAADgRCwAAAAnYgEAADgRCwAAwIlYAAAATsQCAABwIhYAAIATsQAAAJyIBQAA4EQsAAAAJ2IBAAA4EQsAAMCJWAAAAE7EAgAAcCIWAACAE7EAAACciAUAAOBELAAAACdiAQAAOBELAADAiVgAAABOxAIAAHAiFgAAgBOxAAAAnMKDPYDyREVFKTc31/seAIDLTVV5LKyyseDz+RQdHR3sYQAAEDRV5bGQlyEAAIATsQAAAJyIBQAA4EQsAAAAJ2IBAAA4EQsAAMCJWAAAAE7EAgAAcCIWAACAE7EAAACciAUAAOBELAAAACdiAQAAOBELAADAiVgAAABOxAIAAHAiFgAAgBOxAAAAnIgFAADgRCwAAAAnYgEAADgRCwAAwIlYAAAATsQCAABwIhYAAIATsQAAAJyIBQAA4EQsAAAAJ2IBAAA4EQsAAMCJWAAAAE7EAgAAcCIWAACAE7EAAACciAUAAOBELAAAACdiAQAAOBELAADAiVgAAABOxAIAAHAiFgAAgBOxAAAAnIgFAADgRCwAAAAnYgEAADgRCwAAwIlYAAAATsQCAABwIhYAAIATsQAAAJyIBQAA4EQsAAAAJ2IBAAA4EQsAAMCJWAAAAE7EAgAAcCIWAACAE7EAAACciAUAAOBELAAAACdiAQAAOBELAADAiVgAAABOxAIAAHAiFgAAgBOxAAAAnIgFAADgRCwAAAAnYgEAADiFB3sAocRXXCgL9iAqU9Gpsr/HZcNXXBjsIQCoAoiFShS3aWawh3DR1PyfnGAPAQAQJLwMAQAAnHhmoYKioqKUm5sb7GFcFGamgoICSZLf75fP5wvyiBBMUVFRwR4CgCAhFirI5/MpOjo62MO4aGJiYoI9BABAkPEyBAAAcCIWAACAE7EAAACciAUAAOBELAAAACdiAQAAOBELAADAiVgAAABOxAIAAHAiFgAAgBOxAAAAnIgFAADgRCwAAAAnYgEAADgRCwAAwIlYAAAATsQCAABwIhYAAIATsQAAAJyIBQAA4EQsAAAAJ2IBAAA4EQsAAMCJWAAAAE7EAgAAcCIWAACAE7EAAACciAUAAOBELAAAACdiAQAAOBELAADAiVgAAABOxAIAAHAKr+gJzEySdPTo0QoPBgAAXBolj9slj+MuFY6FvLw8SVLDhg0reioAAHCJ5eXlKT4+3nmMz84lKRyKi4u1b98+mZkaNWqkvXv3qlatWhU5ZZV29OhRNWzYkHmGkMtlrswztFwu85Qun7le6nmamfLy8pSSkqKwMPe7Eir8zEJYWJgaNGjgPZ1Rq1atkF7MEswz9Fwuc2WeoeVymad0+cz1Us7zbM8olOANjgAAwIlYAAAATpUWC36/X6NHj5bf76+sU1ZJzDP0XC5zZZ6h5XKZp3T5zLUqz7PCb3AEAAChjZchAACAE7EAAACciAUAAOBELAAAAKfzioUxY8bI5/MFfCUlJXn7zUxjxoxRSkqKoqOj1b59e23durXSB13ZPvzwQ/Xo0UMpKSny+XyaN29ewP5zmVdBQYGGDBmiunXrKjY2Vj179tT//u//XsJZnJuzzbV///6l1vjHP/5xwDFVfa4vvPCCrrvuOtWsWVP16tXT7bffrm3btgUcEyprei5zDYU1nTp1qjIzM71fVpOdna3c3Fxvf6is59nmGQprWZYXXnhBPp9Pw4YN87aFypqerqx5Vpc1Pe9nFpo3b679+/d7X1u2bPH2vfTSS5o0aZKmTJmidevWKSkpST/72c+8vx9RVR0/flzXXnutpkyZUub+c5nXsGHDNHfuXOXk5Oijjz7SsWPH1L17dxUVFV2qaZyTs81Vkjp37hywxosWLQrYX9Xnunr1ag0aNEhr1qzRsmXLVFhYqFtvvVXHjx/3jgmVNT2XuUrVf00bNGigcePG6bPPPtNnn32mDh066LbbbvMePEJlPc82T6n6r+WZ1q1bp9/97nfKzMwM2B4qa1qivHlK1WRN7TyMHj3arr322jL3FRcXW1JSko0bN87blp+fb/Hx8fbGG2+cz80ElSSbO3eud/lc5nXkyBGLiIiwnJwc75i///3vFhYWZosXL75kYz9fZ87VzKxfv3522223lXud6jjXQ4cOmSRbvXq1mYX2mp45V7PQXFMzs9q1a9vvf//7kF5Ps3/O0yz01jIvL89+9KMf2bJly6xdu3b26KOPmlno/YyWN0+z6rOm5/3Mwvbt25WSkqL09HTddddd+vrrryVJO3fu1IEDB3Trrbd6x/r9frVr106ffPJJ5ZRNEJzLvNavX69Tp04FHJOSkqIWLVpUy7mvWrVK9erVU0ZGhh566CEdOnTI21cd5/r9999LkhISEiSF9pqeOdcSobSmRUVFysnJ0fHjx5WdnR2y63nmPEuE0loOGjRI3bp10y233BKwPdTWtLx5lqgOa3pef0jqhhtu0DvvvKOMjAwdPHhQzz33nG688UZt3bpVBw4ckCTVr18/4Dr169fX7t27K2/El9i5zOvAgQOKjIxU7dq1Sx1Tcv3qokuXLrrjjjuUmpqqnTt36umnn1aHDh20fv16+f3+ajdXM9Njjz2mm266SS1atJAUumta1lyl0FnTLVu2KDs7W/n5+YqLi9PcuXN1zTXXeP/DDJX1LG+eUuispSTl5ORow4YNWrduXal9ofQz6pqnVH3W9LxioUuXLt73LVu2VHZ2tq666ipNnz7de0OGz+cLuI6ZldpWHV3IvKrj3O+8807v+xYtWigrK0upqalauHChevXqVe71qupcBw8erM2bN+ujjz4qtS/U1rS8uYbKmjZt2lSbNm3SkSNH9Kc//Un9+vXT6tWrvf2hsp7lzfOaa64JmbXcu3evHn30US1dulRRUVHlHlfd1/Rc5lld1rRCH52MjY1Vy5YttX37du9TEWeWzqFDh0rVYXVyLvNKSkrSyZMn9d1335V7THWVnJys1NRUbd++XVL1muuQIUM0f/58rVy5Ug0aNPC2h+KaljfXslTXNY2MjFSTJk2UlZWlF154Qddee61eeeWVkFvP8uZZluq6luvXr9ehQ4fUpk0bhYeHKzw8XKtXr9arr76q8PBwb6zVfU3PNs+y3qBYVde0QrFQUFCgL7/8UsnJyUpPT1dSUpKWLVvm7T958qRWr16tG2+8scIDDZZzmVebNm0UERERcMz+/fv1+eefV+u5S9Lhw4e1d+9eJScnS6oeczUzDR48WHPmzNGKFSuUnp4esD+U1vRscy1LdVzTspiZCgoKQmo9y1Iyz7JU17Xs2LGjtmzZok2bNnlfWVlZuueee7Rp0yY1btw4JNb0bPOsUaNGqetU2TU9n3dDjhgxwlatWmVff/21rVmzxrp37241a9a0Xbt2mZnZuHHjLD4+3ubMmWNbtmyxX/ziF5acnGxHjx6t+FsxL6K8vDzbuHGjbdy40STZpEmTbOPGjbZ7924zO7d5Pfzww9agQQNbvny5bdiwwTp06GDXXnutFRYWBmtaZXLNNS8vz0aMGGGffPKJ7dy501auXGnZ2dl25ZVXVqu5Dhw40OLj423VqlW2f/9+7+vEiRPeMaGypmeba6is6ciRI+3DDz+0nTt32ubNm+3Xv/61hYWF2dKlS80sdNbTNc9QWcvynPkpgVBZ0zOdPs/qtKbnFQt33nmnJScnW0REhKWkpFivXr1s69at3v7i4mIbPXq0JSUlmd/vt5/+9Ke2ZcuWSh90ZVu5cqVJKvXVr18/Mzu3ef3www82ePBgS0hIsOjoaOvevbvt2bMnCLNxc831xIkTduutt1piYqJFRERYo0aNrF+/fqXmUdXnWtb8JNm0adO8Y0JlTc8211BZ0/vvv99SU1MtMjLSEhMTrWPHjl4omIXOerrmGSprWZ4zYyFU1vRMp8+zOq0pf6IaAAA48bchAACAE7EAAACciAUAAOBELAAAACdiAQAAOBELAADAiVgAAABOxAIQZO3bt9ewYcMkSWlpaXr55Zcr7dw+n0/z5s2rtPMBuDyd11+dBHBxrVu3TrGxscEeRrXUv39/HTlyhDgCLgJiAahCEhMTgz0EACiFlyGAS+j48ePq27ev4uLilJycrIkTJwbsP/NliDFjxqhRo0by+/1KSUnR0KFDA4599tlndffddysuLk4pKSl67bXXnLf/q1/9ShkZGYqJiVHjxo319NNP69SpUwHHzJ8/X1lZWYqKilLdunXVq1cvb9/Jkyf15JNP6sorr1RsbKxuuOEGrVq1ytv/9ttv64orrtCCBQvUtGlTxcTEqHfv3jp+/LimT5+utLQ01a5dW0OGDAn487znet4lS5aoWbNmiouLU+fOnbV//37vfpo+fbree+89+Xw++Xy+gOsDqBhiAbiEnnjiCa1cuVJz587V0qVLtWrVKq1fv77MY2fPnq3Jkyfrt7/9rbZv36558+apZcuWAceMHz9emZmZ2rBhg0aOHKnhw4cH/CnbM9WsWVNvv/22vvjiC73yyit68803NXnyZG//woUL1atXL3Xr1k0bN27UBx98oKysLG//fffdp48//lg5OTnavHmz7rjjDnXu3Fnbt2/3jjlx4oReffVV5eTkaPHixVq1apV69eqlRYsWadGiRZoxY4Z+97vfafbs2ed93gkTJmjGjBn68MMPtWfPHj3++OOSpMcff1x9+vTxAmL//v1V5s8UAyHhkv7ZKuAylpeXZ5GRkZaTk+NtO3z4sEVHR3t/hS41NdUmT55sZmYTJ060jIwMO3nyZJnnS01Ntc6dOwdsu/POO61Lly7eZUk2d+7ccsf00ksvWZs2bbzL2dnZds8995R57I4dO8zn89nf//73gO0dO3a0kSNHmpnZtGnTTJLt2LHD2z9gwACLiYmxvLw8b1unTp1swIABFTrv66+/bvXr1/cu9+vXz2677bZy5wrgwvGeBeAS+dvf/qaTJ08qOzvb25aQkKCmTZuWefwdd9yhl19+WY0bN1bnzp3VtWtX9ejRQ+Hh//yxPf1cJZddn6aYPXu2Xn75Ze3YsUPHjh1TYWGhatWq5e3ftGmTHnrooTKvu2HDBpmZMjIyArYXFBSoTp063uWYmBhdddVV3uX69esrLS1NcXFxAdsOHTpUofMmJyd75wBwcRELwCVi5/nX4Bs2bKht27Zp2bJlWr58uR555BGNHz9eq1evVkRERLnX8/l8ZW5fs2aN7rrrLo0dO1adOnVSfHy8cnJyAt43ER0dXe55i4uLVaNGDa1fv141atQI2Hd6CJw5Np/PV+a24uLiCp/3fO9TABeGWAAukSZNmigiIkJr1qxRo0aNJEnfffedvvrqK7Vr167M60RHR6tnz57q2bOnBg0apKuvvlpbtmzRv/zLv0j6RwCcbs2aNbr66qvLPNfHH3+s1NRUjRo1ytu2e/fugGMyMzP1wQcf6L777it1/datW6uoqEiHDh3ST37yk3Of+FlU1nkjIyMD3jQJoPIQC8AlEhcXpwceeEBPPPGE6tSpo/r162vUqFEKCyv7fcZvv/22ioqKdMMNNygmJkYzZsxQdHS0UlNTvWM+/vhjvfTSS7r99tu1bNkyvfvuu1q4cGGZ52vSpIn27NmjnJwcXXfddVq4cKHmzp0bcMzo0aPVsWNHXXXVVbrrrrtUWFio3NxcPfnkk8rIyNA999yjvn37auLEiWrdurW+/fZbrVixQi1btlTXrl0v6H6prPOmpaVpyZIl2rZtm+rUqaP4+HjnMzAAzh2fhgAuofHjx+unP/2pevbsqVtuuUU33XST2rRpU+axV1xxhd588021bdvW+xf/+++/H/A6/ogRI7R+/Xq1bt1azz77rCZOnKhOnTqVeb7bbrtNw4cP1+DBg9WqVSt98sknevrppwOOad++vd59913Nnz9frVq1UocOHbR27Vpv/7Rp09S3b1+NGDFCTZs2Vc+ePbV27Vo1bNiwQvdLZZz3oYceUtOmTZWVlaXExER9/PHHFRoTgH/yGS/6AdVSWlqahg0b5v2qaAC4WHhmAQAAOBELAADAiZchAACAE88sAAAAJ2IBAAA4EQsAAMCJWAAAAE7EAgAAcCIWAACAE7EAAACciAUAAOBELAAAAKf/B/ejoVVi5ZyaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x=df.displacement)\n", + "plt.title('Boxplot of Displacement')\n", + "plt.show();" + ] + }, + { + "cell_type": "markdown", + "id": "78eff4eb-407f-4d7b-9c7d-42fde78b4cf4", + "metadata": {}, + "source": [ + "Again most engines are on the smaller side of the spectrum ranging from around 100ci to around 260ci which is representative of the market" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "0235d7ee-8882-490c-b209-8d2d2fbacee5", + "metadata": { + "execution": { + "iopub.execute_input": "2022-08-01T00:19:01.124186Z", + "iopub.status.busy": "2022-08-01T00:19:01.124021Z", + "iopub.status.idle": "2022-08-01T00:19:01.256006Z", + "shell.execute_reply": "2022-08-01T00:19:01.255440Z", + "shell.execute_reply.started": "2022-08-01T00:19:01.124159Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAH+CAYAAABTKk23AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzHElEQVR4nO3de1TVVf7/8dcR4QgKeEFuKYqGecFbYipZYCpdtJs1XdSWfZsau2ha41RmJbZK0iZjyrKvM2W2+lrNlJYzNo14gTKpTMVbaPYNxUpClACFMGH//vDH+XoEVBA4G3g+1vqs5dmffT6f9z47e/k5Z5/zcRhjjAAAgJVaeLoAAABQPYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGk3Cm2++KYfD4dpatWql0NBQjRgxQklJScrNza30nMTERDkcjhqdp7i4WImJiUpNTa3R86o6V9euXTV27NgaHedsli1bpuTk5Cr3ORwOJSYm1un56tratWsVExOj1q1by+Fw6MMPP6zU59ChQ2rRooXuu+++SvumTZsmh8OhmTNnVtr3+9//Xl5eXsrPzz/neir+u9q3b19NhiFJSk1NlcPh0Pvvv3/WvmeaN4CgRpOyZMkSpaenKyUlRa+88ooGDBigefPmqVevXlqzZo1b37vvvlvp6ek1On5xcbHmzJlT46Cuzblq40z/w09PT9fdd99d7zXUljFGt9xyi7y9vbVy5Uqlp6crLi6uUr+OHTuqT58+Wr9+faV9qampat26dbX7BgwYoHbt2p1zTWPGjFF6errCwsJqNpgaIqhxJgQ1mpTo6GgNHTpUl112mW666Sa9+OKL2r59u1q3bq1x48bp559/dvXt1KmThg4dWq/1FBcXN9i5zmbo0KHq1KmTR2s4k59++klHjhzRjTfeqJEjR2ro0KHVhuqIESO0Z88e5eTkuNqOHDmiHTt26L777tPmzZtVVFTk2vfDDz/o+++/14gRI2pUU8eOHTV06FA5nc7aDQqoAwQ1mryIiAi98MILKioq0n//93+72qt6O3rdunWKj49Xhw4d5Ovrq4iICN10000qLi7Wvn371LFjR0nSnDlzXG+z33nnnW7H27Jli26++Wa1a9dO3bt3r/ZcFVasWKF+/fqpVatW6tatm1566SW3/dW9/Vrx1mrF1X18fLxWrVql/fv3u30MUKGqt7537typ66+/Xu3atVOrVq00YMAALV26tMrzvPPOO5o1a5bCw8MVEBCgUaNGac+ePdW/8KfYsGGDRo4cKX9/f/n5+Sk2NlarVq1y7U9MTHT9I+LRRx+Vw+FQ165dqz1eReCe+s5GWlqaWrZsqRkzZkiSPvvsM9e+iivsU4N6zZo1GjlypAICAuTn56dLL71Ua9eudTtPVa+9MUZz585Vly5d1KpVK8XExCglJUXx8fGKj4+vVOtvv/12xtftbPMGENRoFq655hp5eXnp008/rbbPvn37NGbMGPn4+OiNN97QJ598oueee06tW7fW8ePHFRYWpk8++UTSyc8709PTlZ6erieffNLtOOPGjdOFF16of/zjH3rttdfOWFdGRoamT5+uhx56SCtWrFBsbKymTZumP//5zzUe46uvvqpLL71UoaGhrtrO9Hb7nj17FBsbq127dumll17S8uXL1bt3b915552aP39+pf6PP/649u/fr7/97W9avHix9u7dq2uvvVZlZWVnrCstLU1XXHGFCgoK9Prrr+udd96Rv7+/rr32Wr333nuSTn40sHz5cknS1KlTlZ6erhUrVlR7zLi4OLVo0cLtLe7169crJiZGISEhGjRokFuIr1+/Xl5eXrrsssskSW+//bYSEhIUEBCgpUuX6u9//7vat2+vK6+8slJYn27WrFmaNWuWrrrqKn300Ue69957dffdd+vbb7+tsv/ZXreazhuaIQM0AUuWLDGSzKZNm6rtExISYnr16uV6PHv2bHPqX4H333/fSDIZGRnVHuPQoUNGkpk9e3alfRXHe+qpp6rdd6ouXboYh8NR6XyjR482AQEB5tixY25jy8rKcuu3fv16I8msX7/e1TZmzBjTpUuXKms/ve7bbrvNOJ1Ok52d7dbv6quvNn5+fuaXX35xO88111zj1u/vf/+7kWTS09OrPF+FoUOHmuDgYFNUVORqO3HihImOjjadOnUy5eXlxhhjsrKyjCTz/PPPn/F4FQYMGGB69Ojhety3b1/z2GOPGWOMeeSRR0xMTIxrX2RkpLnkkkuMMcYcO3bMtG/f3lx77bVuxysrKzP9+/d39TOm8mt/5MgR43Q6za233ur23PT0dCPJxMXFudpq8rqdad4ArqjRbJiz3Hp9wIAB8vHx0R/+8ActXbpU33//fa3Oc9NNN51z3z59+qh///5ubePHj1dhYaG2bNlSq/Ofq3Xr1mnkyJHq3LmzW/udd96p4uLiSld11113ndvjfv36SZL2799f7TmOHTumL7/8UjfffLPatGnjavfy8tIdd9yhH3744ZzfPj/diBEj9O233+qnn37S4cOHtXPnTtdbz3Fxcdq6dasKCgqUnZ2trKws19veGzdu1JEjRzRp0iSdOHHCtZWXl+uqq67Spk2bdOzYsSrP+cUXX6i0tFS33HKLW/vQoUOrfau+Nq8bcCqCGs3CsWPHdPjwYYWHh1fbp3v37lqzZo2Cg4P1wAMPqHv37urevbv+8pe/1OhcNVkhHBoaWm3b4cOHa3Temjp8+HCVtVa8Rqefv0OHDm6PKxZYlZSUVHuO/Px8GWNqdJ5zdern1KmpqfLy8tKll14qSRo+fLikk59Tn/75dMWCwptvvlne3t5u27x582SM0ZEjR6o8Z0WtISEhlfZV1SbV7nUDTtXS0wUADWHVqlUqKyurcrHPqS677DJddtllKisr09dff62XX35Z06dPV0hIiG677bZzOldNFgKdumr59LaK/8G3atVKklRaWurWLy8v75zPU5UOHTro4MGDldp/+uknSVJQUNB5HV+S2rVrpxYtWtTLeS6//HJ5eXkpNTVVTqdTF198seuqPSAgQAMGDND69et15MgRtWzZ0hXiFed7+eWXq12Jf7bQPfXbAxVycnLOuAAOqC2uqNHkZWdna8aMGQoMDNTkyZPP6TleXl4aMmSIXnnlFUlyvQ1d11dDu3bt0rZt29zali1bJn9/f1188cWS5Pqf//bt2936rVy5stLxnE7nOdc2cuRIrVu3zhWYFd566y35+fnVydfJWrdurSFDhmj58uVudZWXl+vtt99Wp06d1KNHj1odOzAwUAMHDnRdUZ/+j7C4uDitX79eqampuuSSS1whfumll6pt27b65ptvFBMTU+Xm4+NT5TmHDBkip9PpWgRX4Ysvvjivt7JrMm9ofriiRpOyc+dO12eOubm5+uyzz7RkyRJ5eXlpxYoVrq9XVeW1117TunXrNGbMGEVEROjXX3/VG2+8IUkaNWqUJMnf319dunTRRx99pJEjR6p9+/YKCgqq9ZVUeHi4rrvuOiUmJiosLExvv/22UlJSNG/ePPn5+UmSBg8erIsuukgzZszQiRMn1K5dO61YsUIbNmyodLy+fftq+fLlWrRokQYNGqQWLVooJiamynPPnj1b//rXvzRixAg99dRTat++vf7nf/5Hq1at0vz58xUYGFirMZ0uKSlJo0eP1ogRIzRjxgz5+Pjo1Vdf1c6dO/XOO++c11eRRowYoeeff14Oh0Pz5s1z2xcXF6cXX3xRxhhNmDDB1d6mTRu9/PLLmjRpko4cOaKbb75ZwcHBOnTokLZt26ZDhw5p0aJFVZ6vffv2evjhh5WUlKR27drpxhtv1A8//KA5c+YoLCxMLVrU7tqnJvOGZsiza9mAulGxOrdi8/HxMcHBwSYuLs7MnTvX5ObmVnrO6Sux09PTzY033mi6dOlinE6n6dChg4mLizMrV650e96aNWvMwIEDjdPpNJLMpEmT3I536NChs57LmJOrvseMGWPef/9906dPH+Pj42O6du1qFixYUOn53377rUlISDABAQGmY8eOZurUqWbVqlWVVn0fOXLE3HzzzaZt27bG4XC4nVNVrFbfsWOHufbaa01gYKDx8fEx/fv3N0uWLHHrU7F6+R//+Idbe8Uq7dP7V+Wzzz4zV1xxhWndurXx9fU1Q4cONf/85z+rPN65rvo2xpiPP/7YSDJeXl6moKDAbd+RI0dMixYtjCSTkpJS6blpaWlmzJgxpn379sbb29tccMEFZsyYMW7jrGrFfXl5uXnmmWdMp06djI+Pj+nXr5/517/+Zfr3729uvPFGV7+avG5nmjfAYcxZlsICAM4oKytLPXv21OzZs/X44497uhw0MQQ1ANTAtm3b9M477yg2NlYBAQHas2eP5s+fr8LCQu3cubPahWhAbfEZNQDUQOvWrfX111/r9ddf1y+//KLAwEDFx8fr2WefJaRRL7iiBgDAYnw9CwAAixHUAABYjKAGAMBiTT6ojTEqLCw86w0ZAACwUZMP6qKiIgUGBqqoqMjTpQAAUGNNPqgBAGjMCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALNbS0wWg7mRnZysvL8/TZVQSFBSkiIgIT5cBAI0SQd1EZGdnq2fPXiopKfZ0KZX4+vpp9+5MwhoAaoGgbiLy8vJUUlKsIXfNVkBYV0+X41J4cJ++fGOO8vLyCGoAqAWCuokJCOuq9hEXeboMAEAdYTEZAAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAi3k0qE+cOKEnnnhCkZGR8vX1Vbdu3fT000+rvLzc1ccYo8TERIWHh8vX11fx8fHatWuXB6sGAKDheDSo582bp9dee00LFy5UZmam5s+fr+eff14vv/yyq8/8+fO1YMECLVy4UJs2bVJoaKhGjx6toqIiD1YOAEDD8GhQp6en6/rrr9eYMWPUtWtX3XzzzUpISNDXX38t6eTVdHJysmbNmqVx48YpOjpaS5cuVXFxsZYtW+bJ0gEAaBAeDerhw4dr7dq1+vbbbyVJ27Zt04YNG3TNNddIkrKyspSTk6OEhATXc5xOp+Li4rRx48Yqj1laWqrCwkK3DQCAxqqlJ0/+6KOPqqCgQD179pSXl5fKysr07LPP6vbbb5ck5eTkSJJCQkLcnhcSEqL9+/dXecykpCTNmTOnfgsHAKCBePSK+r333tPbb7+tZcuWacuWLVq6dKn+/Oc/a+nSpW79HA6H22NjTKW2CjNnzlRBQYFrO3DgQL3VDwBAffPoFfWf/vQnPfbYY7rtttskSX379tX+/fuVlJSkSZMmKTQ0VNLJK+uwsDDX83JzcytdZVdwOp1yOp31XzwAAA3Ao1fUxcXFatHCvQQvLy/X17MiIyMVGhqqlJQU1/7jx48rLS1NsbGxDVorAACe4NEr6muvvVbPPvusIiIi1KdPH23dulULFizQXXfdJenkW97Tp0/X3LlzFRUVpaioKM2dO1d+fn4aP368J0sHAKBBeDSoX375ZT355JO6//77lZubq/DwcE2ePFlPPfWUq88jjzyikpIS3X///crPz9eQIUO0evVq+fv7e7ByAAAahkeD2t/fX8nJyUpOTq62j8PhUGJiohITExusLgAAbMFvfQMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAs5vGg/vHHHzVx4kR16NBBfn5+GjBggDZv3uzab4xRYmKiwsPD5evrq/j4eO3atcuDFQMA0HA8GtT5+fm69NJL5e3trX//+9/65ptv9MILL6ht27auPvPnz9eCBQu0cOFCbdq0SaGhoRo9erSKioo8VzgAAA2kpSdPPm/ePHXu3FlLlixxtXXt2tX1Z2OMkpOTNWvWLI0bN06StHTpUoWEhGjZsmWaPHlyQ5cMAECD8ugV9cqVKxUTE6Pf/e53Cg4O1sCBA/XXv/7VtT8rK0s5OTlKSEhwtTmdTsXFxWnjxo1VHrO0tFSFhYVuGwAAjZVHg/r777/XokWLFBUVpf/85z+699579eCDD+qtt96SJOXk5EiSQkJC3J4XEhLi2ne6pKQkBQYGurbOnTvX7yAAAKhHHg3q8vJyXXzxxZo7d64GDhyoyZMn65577tGiRYvc+jkcDrfHxphKbRVmzpypgoIC13bgwIF6qx8AgPrm0aAOCwtT79693dp69eql7OxsSVJoaKgkVbp6zs3NrXSVXcHpdCogIMBtAwCgsfLoYrJLL71Ue/bscWv79ttv1aVLF0lSZGSkQkNDlZKSooEDB0qSjh8/rrS0NM2bN6/B60XtZWZmerqEKgUFBSkiIsLTZQBAtTwa1A899JBiY2M1d+5c3XLLLfrqq6+0ePFiLV68WNLJt7ynT5+uuXPnKioqSlFRUZo7d678/Pw0fvx4T5aOc1RScFiSQxMnTvR0KVXy9fXT7t2ZhDUAa3k0qAcPHqwVK1Zo5syZevrppxUZGank5GRNmDDB1eeRRx5RSUmJ7r//fuXn52vIkCFavXq1/P39PVg5ztVvxUWSjAaMf1QdI3t6uhw3hQf36cs35igvL4+gBmAtjwa1JI0dO1Zjx46tdr/D4VBiYqISExMbrijUuTbBEWofcZGnywCARsfjPyEKAACqR1ADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsFhLTxcAeFpmZqanS6gkKChIERERni4DgAUIajRbJQWHJTk0ceJET5dSia+vn3bvziSsARDUaL5+Ky6SZDRg/KPqGNnT0+W4FB7cpy/fmKO8vDyCGgBBDbQJjlD7iIs8XQYAVInFZAAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMVqFdTdunXT4cOHK7X/8ssv6tat23kXBQAATqpVUO/bt09lZWWV2ktLS/Xjjz+ed1EAAOCkGn2PeuXKla4//+c//1FgYKDrcVlZmdauXauuXbvWWXEAADR3NQrqG264QZLkcDg0adIkt33e3t7q2rWrXnjhhTorDgCA5q5GQV1eXi5JioyM1KZNmxQUFFQvRQEAgJNq9ROiWVlZdV0HAACoQq1/63vt2rVau3atcnNzXVfaFd54443zLgwAANQyqOfMmaOnn35aMTExCgsLk8PhqOu6AACAahnUr732mt58803dcccddV0PAAA4Ra2+R338+HHFxsbWdS0AAOA0tQrqu+++W8uWLavrWgAAwGlq9db3r7/+qsWLF2vNmjXq16+fvL293fYvWLCgTooDAKC5q1VQb9++XQMGDJAk7dy5020fC8sAAKg7tQrq9evX13UdAACgCtzmEgAAi9XqinrEiBFnfIt73bp1tS4IAAD8n1oFdcXn0xV+++03ZWRkaOfOnZVu1gEAAGqvVkH94osvVtmemJioo0ePnldBAADg/9TpZ9QTJ07kd74BAKhDdRrU6enpatWqVV0eEgCAZq1Wb32PGzfO7bExRgcPHtTXX3+tJ598sk4KAwAAtQzqwMBAt8ctWrTQRRddpKeffloJCQl1UhgAAKhlUC9ZsqSu6wAAAFWoVVBX2Lx5szIzM+VwONS7d28NHDiwruoCAACqZVDn5ubqtttuU2pqqtq2bStjjAoKCjRixAi9++676tixY13XCQBAs1SrVd9Tp05VYWGhdu3apSNHjig/P187d+5UYWGhHnzwwbquEQCAZqtWV9SffPKJ1qxZo169ernaevfurVdeeYXFZAAA1KFaXVGXl5dXuge1JHl7e6u8vPy8iwIAACfVKqivuOIKTZs2TT/99JOr7ccff9RDDz2kkSNH1llxAAA0d7UK6oULF6qoqEhdu3ZV9+7ddeGFFyoyMlJFRUV6+eWX67pGAACarVp9Rt25c2dt2bJFKSkp2r17t4wx6t27t0aNGlXX9QEA0KzV6Ip63bp16t27twoLCyVJo0eP1tSpU/Xggw9q8ODB6tOnjz777LN6KRQAgOaoRkGdnJyse+65RwEBAZX2BQYGavLkyVqwYEGdFQcAQHNXo6Detm2brrrqqmr3JyQkaPPmzeddFAAAOKlGQf3zzz9X+bWsCi1bttShQ4fOuygAAHBSjYL6ggsu0I4dO6rdv337doWFhZ13UQAA4KQaBfU111yjp556Sr/++mulfSUlJZo9e7bGjh1bZ8UBANDc1ejrWU888YSWL1+uHj16aMqUKbrooovkcDiUmZmpV155RWVlZZo1a1Z91QoAQLNTo6AOCQnRxo0bdd9992nmzJkyxkiSHA6HrrzySr366qsKCQmpl0IBAGiOavyDJ126dNHHH3+s/Px8fffddzLGKCoqSu3atauP+gAAaNZq9ctkktSuXTsNHjy4LmsBAACnqdVvfQMAgIZBUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABazJqiTkpLkcDg0ffp0V5sxRomJiQoPD5evr6/i4+O1a9cuzxUJAEADsyKoN23apMWLF6tfv35u7fPnz9eCBQu0cOFCbdq0SaGhoRo9erSKioo8VCkAAA3L40F99OhRTZgwQX/961/dft3MGKPk5GTNmjVL48aNU3R0tJYuXari4mItW7bMgxUDANBwav3LZHXlgQce0JgxYzRq1Cg988wzrvasrCzl5OQoISHB1eZ0OhUXF6eNGzdq8uTJVR6vtLRUpaWlrseFhYX1VzzQDGVnZysvL8/TZVQSFBSkiIgIT5cB1DmPBvW7776rLVu2aNOmTZX25eTkSFKlm3yEhIRo//791R4zKSlJc+bMqdtCAUg6GdI9e/ZSSUmxp0upxNfXT7t3ZxLWaHI8FtQHDhzQtGnTtHr1arVq1arafg6Hw+2xMaZS26lmzpyphx9+2PW4sLBQnTt3Pv+CASgvL08lJcUactdsBYR19XQ5LoUH9+nLN+YoLy+PoEaT47Gg3rx5s3JzczVo0CBXW1lZmT799FMtXLhQe/bskXTyyjosLMzVJzc394y30nQ6nXI6nfVXOAAFhHVV+4iLPF0G0Cx4bDHZyJEjtWPHDmVkZLi2mJgYTZgwQRkZGerWrZtCQ0OVkpLies7x48eVlpam2NhYT5UNAECD8tgVtb+/v6Kjo93aWrdurQ4dOrjap0+frrlz5yoqKkpRUVGaO3eu/Pz8NH78eE+UDABAg/P4qu8zeeSRR1RSUqL7779f+fn5GjJkiFavXi1/f39PlwYAQIOwKqhTU1PdHjscDiUmJioxMdEj9QAA4Gke/8ETAABQPYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwmFVfzwLwfzIzMz1dQiU21gQ0dQQ1YJmSgsOSHJo4caKnS6nWb6XHPV0C0GwQ1IBlfisukmQ0YPyj6hjZ09PluDm4I107Vy7WiRMnPF0K0GwQ1ICl2gRHWHeHqsKD+zxdAtDssJgMAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAi/HLZABQj7Kzs5WXl+fpMqoUFBSkiIgIT5eBsyCoAaCeZGdnq2fPXiopKfZ0KVXy9fXT7t2ZhLXlCGoAqCd5eXkqKSnWkLtmKyCsq6fLcVN4cJ++fGOO8vLyCGrLEdQAUM8Cwrpad4MVNB4sJgMAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABbjJ0RryNY74WRmZnq6BABAPSCoa8D2O+FI0m+lxz1dAgCgDhHUNWDznXAO7kjXzpWLdeLECU+XAgCoQwR1Ldh4J5zCg/s8XQIAoB6wmAwAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYq74BNBm2/fCPbfWgcSKoATR6JQWHJTk0ceJET5dSJX6ICOeDoAbQ6P1WXCTJaMD4R9Uxsqeny3Hhh4hQFwhqAE1Gm+AIq36MiB8iQl1gMRkAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAW82hQJyUlafDgwfL391dwcLBuuOEG7dmzx62PMUaJiYkKDw+Xr6+v4uPjtWvXLg9VDABAw/JoUKelpemBBx7QF198oZSUFJ04cUIJCQk6duyYq8/8+fO1YMECLVy4UJs2bVJoaKhGjx6toqIiD1YOAEDDaOnJk3/yySduj5csWaLg4GBt3rxZl19+uYwxSk5O1qxZszRu3DhJ0tKlSxUSEqJly5Zp8uTJnigbAIAGY9Vn1AUFBZKk9u3bS5KysrKUk5OjhIQEVx+n06m4uDht3LixymOUlpaqsLDQbQMAoLGyJqiNMXr44Yc1fPhwRUdHS5JycnIkSSEhIW59Q0JCXPtOl5SUpMDAQNfWuXPn+i0cAIB6ZE1QT5kyRdu3b9c777xTaZ/D4XB7bIyp1FZh5syZKigocG0HDhyol3oBAGgIHv2MusLUqVO1cuVKffrpp+rUqZOrPTQ0VNLJK+uwsDBXe25ubqWr7ApOp1NOp7N+CwYAoIF49IraGKMpU6Zo+fLlWrdunSIjI932R0ZGKjQ0VCkpKa6248ePKy0tTbGxsQ1dLgAADc6jV9QPPPCAli1bpo8++kj+/v6uz50DAwPl6+srh8Oh6dOna+7cuYqKilJUVJTmzp0rPz8/jR8/3pOlAwDQIDwa1IsWLZIkxcfHu7UvWbJEd955pyTpkUceUUlJie6//37l5+dryJAhWr16tfz9/Ru4WgAAGp5Hg9oYc9Y+DodDiYmJSkxMrP+CAACwjDWrvgEAQGVWrPoGAHhGZmamp0uoJCgoSBEREZ4uwxoENQA0QyUFhyU5NHHiRE+XUomvr592784krP8/ghoAmqHfioskGQ0Y/6g6Rvb0dDkuhQf36cs35igvL4+g/v8IagBoxtoER6h9xEWeLgNnwGIyAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIu19HQBAACcLjMz09MlVCkoKEgRERENek6CGgBgjZKCw5IcmjhxoqdLqZKvr592785s0LAmqAEA1vituEiS0YDxj6pjZE9Pl+Om8OA+ffnGHOXl5RHUAIDmrU1whNpHXOTpMqzAYjIAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFisUQT1q6++qsjISLVq1UqDBg3SZ5995umSAABoENYH9Xvvvafp06dr1qxZ2rp1qy677DJdffXVys7O9nRpAADUO+uDesGCBfr973+vu+++W7169VJycrI6d+6sRYsWebo0AADqXUtPF3Amx48f1+bNm/XYY4+5tSckJGjjxo1VPqe0tFSlpaWuxwUFBZKkwsLC867n6NGjkqQj+/foRGnJeR+vLhUe3C9JKvhxr7xbOjxczf+xtS7J3tpsrUuytzbqqjlba7O1LkkqzDn5Tu7Ro0frJFMkyd/fXw7HWcZpLPbjjz8aSebzzz93a3/22WdNjx49qnzO7NmzjSQ2NjY2Njbrt4KCgrNmodVX1BVO/9eGMabaf4HMnDlTDz/8sOtxeXm5jhw5og4dOlR6TmFhoTp37qwDBw4oICCg7gv3kKY6Lqnpjq2pjktqumNrquOSGFtD8vf3P2sfq4M6KChIXl5eysnJcWvPzc1VSEhIlc9xOp1yOp1ubW3btj3jeQICAqyYsLrWVMclNd2xNdVxSU13bE11XBJjs4XVi8l8fHw0aNAgpaSkuLWnpKQoNjbWQ1UBANBwrL6ilqSHH35Yd9xxh2JiYjRs2DAtXrxY2dnZuvfeez1dGgAA9c76oL711lt1+PBhPf300zp48KCio6P18ccfq0uXLud9bKfTqdmzZ1d6q7yxa6rjkpru2JrquKSmO7amOi6JsdnGYYwxni4CAABUzerPqAEAaO4IagAALEZQAwBgMYIaAACLNfqg/vTTT3XttdcqPDxcDodDH374odv+O++8Uw6Hw20bOnSoW5/S0lJNnTpVQUFBat26ta677jr98MMPbn3y8/N1xx13KDAwUIGBgbrjjjv0yy+/1Nu4kpKSNHjwYPn7+ys4OFg33HCD9uzZ49bHGKPExESFh4fL19dX8fHx2rVrl9VjO5dxNdY5W7Rokfr16+f6IYVhw4bp3//+t2t/Y5yvcxlXY52v0yUlJcnhcGj69OmutsY6Z6eramyNdd4SExMr1R0aGura31TmzM35/Rq353388cdm1qxZ5oMPPjCSzIoVK9z2T5o0yVx11VXm4MGDru3w4cNufe69915zwQUXmJSUFLNlyxYzYsQI079/f3PixAlXn6uuuspER0ebjRs3mo0bN5ro6GgzduzYehvXlVdeaZYsWWJ27txpMjIyzJgxY0xERIQ5evSoq89zzz1n/P39zQcffGB27Nhhbr31VhMWFmYKCwutHdu5jKuxztnKlSvNqlWrzJ49e8yePXvM448/bry9vc3OnTuNMY1zvs5lXI11vk711Vdfma5du5p+/fqZadOmudob65ydy9ga67zNnj3b9OnTx63u3Nxc1/6mMGena/RBfarqgvr666+v9jm//PKL8fb2Nu+++66r7ccffzQtWrQwn3zyiTHGmG+++cZIMl988YWrT3p6upFkdu/eXadjqE5ubq6RZNLS0owxxpSXl5vQ0FDz3HPPufr8+uuvJjAw0Lz22mvGmMYxttPHZUzTmTNjjGnXrp3529/+1mTmq0LFuIxp/PNVVFRkoqKiTEpKiomLi3OFWVOYs+rGZkzjnbfZs2eb/v37V7mvKcxZVRr9W9/nIjU1VcHBwerRo4fuuece5ebmuvZt3rxZv/32mxISElxt4eHhio6Odt1KMz09XYGBgRoyZIirz9ChQxUYGFjt7TbrWsXtOtu3by9JysrKUk5OjlvdTqdTcXFxrpoaw9hOH1eFxj5nZWVlevfdd3Xs2DENGzasyczX6eOq0Jjn64EHHtCYMWM0atQot/amMGfVja1CY523vXv3Kjw8XJGRkbrtttv0/fffS2oac1YV63+Z7HxdffXV+t3vfqcuXbooKytLTz75pK644gpt3rxZTqdTOTk58vHxUbt27dyeFxIS4roZSE5OjoKDgysdOzg4uNINQ+qDMUYPP/ywhg8frujoaFdNFXWeKiQkRPv373f1sXlsVY1LatxztmPHDg0bNky//vqr2rRpoxUrVqh3796uv9yNdb6qG5fUuOfr3Xff1ZYtW7Rp06ZK+xr737EzjU1qvPM2ZMgQvfXWW+rRo4d+/vlnPfPMM4qNjdWuXbsa/ZxVp8kH9a233ur6c3R0tGJiYtSlSxetWrVK48aNq/Z55rRbaVZ1W83T+9SXKVOmaPv27dqwYUOlfTW5BWh1fTw1turG1Zjn7KKLLlJGRoZ++eUXffDBB5o0aZLS0tKqramxzFd14+rdu3ejna8DBw5o2rRpWr16tVq1alVtv8Y4Z+cytsY6b1dffbXrz3379tWwYcPUvXt3LV261LUYrjHO2Zk0i7e+TxUWFqYuXbpo7969kqTQ0FAdP35c+fn5bv1OvZVmaGiofv7550rHOnToULW326wrU6dO1cqVK7V+/Xp16tTJ1V6xyvFMtwC1eWzVjasqjWnOfHx8dOGFFyomJkZJSUnq37+//vKXvzT6+apuXFVpLPO1efNm5ebmatCgQWrZsqVatmyptLQ0vfTSS2rZsqXrvI1xzs42trKyskrPaSzzdrrWrVurb9++2rt3b6P/e1adZhfUhw8f1oEDBxQWFiZJGjRokLy9vd1upXnw4EHt3LnTdSvNYcOGqaCgQF999ZWrz5dffqmCgoJ6u92mMUZTpkzR8uXLtW7dOkVGRrrtj4yMVGhoqFvdx48fV1pamqsmG8d2tnFVpbHMWVWMMSotLW2081WdinFVpbHM18iRI7Vjxw5lZGS4tpiYGE2YMEEZGRnq1q1bo52zs43Ny8ur0nMay7ydrrS0VJmZmQoLC2tyf89cGmrVWn0pKioyW7duNVu3bjWSzIIFC8zWrVvN/v37TVFRkfnjH/9oNm7caLKyssz69evNsGHDzAUXXFBpqX6nTp3MmjVrzJYtW8wVV1xR5VL9fv36mfT0dJOenm769u1br0v177vvPhMYGGhSU1PdvoZQXFzs6vPcc8+ZwMBAs3z5crNjxw5z++23V/k1BJvGdrZxNeY5mzlzpvn0009NVlaW2b59u3n88cdNixYtzOrVq40xjXO+zjauxjxfVTl9ZXRjnbOqnDq2xjxvf/zjH01qaqr5/vvvzRdffGHGjh1r/P39zb59+4wxTWvOKjT6oF6/fr2RVGmbNGmSKS4uNgkJCaZjx47G29vbREREmEmTJpns7Gy3Y5SUlJgpU6aY9u3bG19fXzN27NhKfQ4fPmwmTJhg/P39jb+/v5kwYYLJz8+vt3FVNSZJZsmSJa4+5eXlZvbs2SY0NNQ4nU5z+eWXmx07dlg9trONqzHP2V133WW6dOlifHx8TMeOHc3IkSNdIW1M45yvs42rMc9XVU4P6sY6Z1U5dWyNed4qvhft7e1twsPDzbhx48yuXbtc+5vSnFXgNpcAAFis2X1GDQBAY0JQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEEN4Ky6du2q5OTkc+6/b98+ORwOZWRk1FtNQHNBUAM4q02bNukPf/hDnR7zzTffVNu2bev0mEBT1ORvcwng/HXs2NHTJQDNFlfUQBP0z3/+U23btlV5ebkkKSMjQw6HQ3/6059cfSZPnqzbb79dkrRx40Zdfvnl8vX1VefOnfXggw/q2LFjrr6nv/W9e/duDR8+XK1atVLv3r21Zs0aORwOffjhh251fP/99xoxYoT8/PzUv39/paenS5JSU1P1X//1XyooKJDD4ZDD4VBiYmL9vBhAI0dQA03Q5ZdfrqKiIm3dulWSlJaWpqCgIKWlpbn6pKamKi4uTjt27NCVV16pcePGafv27Xrvvfe0YcMGTZkypcpjl5eX64YbbpCfn5++/PJLLV68WLNmzaqy76xZszRjxgxlZGSoR48euv3223XixAnFxsYqOTlZAQEBOnjwoA4ePKgZM2bU/QsBNAEENdAEBQYGasCAAUpNTZV0MpQfeughbdu2TUVFRcrJydG3336r+Ph4Pf/88xo/frymT5+uqKgoxcbG6qWXXtJbb72lX3/9tdKxV69erf/93//VW2+9pf79+2v48OF69tlnq6xjxowZGjNmjHr06KE5c+Zo//79+u677+Tj46PAwEA5HA6FhoYqNDRUbdq0qc+XBGi0CGqgiYqPj1dqaqqMMfrss890/fXXKzo6Whs2bND69esVEhKinj17avPmzXrzzTfVpk0b13bllVeqvLxcWVlZlY67Z88ede7cWaGhoa62Sy65pMoa+vXr5/pzWFiYJCk3N7eORwo0bSwmA5qo+Ph4vf7669q2bZtatGih3r17Ky4uTmlpacrPz1dcXJykk29lT548WQ8++GClY0RERFRqM8bI4XCcUw3e3t6uP1c8p+JzcwDnhqAGmqiKz6mTk5MVFxcnh8OhuLg4JSUlKT8/X9OmTZMkXXzxxdq1a5cuvPDCczpuz549lZ2drZ9//lkhISGSTn59q6Z8fHxUVlZW4+cBzQ1vfQNNVMXn1G+//bbi4+MlnQzvLVu2uD6flqRHH31U6enpeuCBB5SRkaG9e/dq5cqVmjp1apXHHT16tLp3765JkyZp+/bt+vzzz12Lyc71Sls6uZL86NGjWrt2rfLy8lRcXHxe4wWaKoIaaMJGjBihsrIyVyi3a9dOvXv3VseOHdWrVy9JJz9HTktL0969e3XZZZdp4MCBevLJJ12fKZ/Oy8tLH374oY4eParBgwfr7rvv1hNPPCFJatWq1TnXFhsbq3vvvVe33nqrOnbsqPnz55/fYIEmymGMMZ4uAkDj9vnnn2v48OH67rvv1L17d0+XAzQpBDWAGluxYoXatGmjqKgofffdd5o2bZratWunDRs2eLo0oMlhMRmAGisqKtIjjzyiAwcOKCgoSKNGjdILL7zg6bKAJokragAALMZiMgAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACz2/wBjfIiE5EOEwwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.displot(x=df.weight)\n", + "plt.title('Distribution of Weight')\n", + "plt.show();" + ] + }, + { + "cell_type": "markdown", + "id": "b8bbd1af-1c95-4fde-916e-e757f95b2f04", + "metadata": {}, + "source": [ + "Weight is a major player in fuel economy as it takes more energy to move a heavy car. An inefficient engine moving less weight than a highly efficient engine can end up burning more fuel but generally less weight means higher mpg. Most cars here are around 2000lbs, which makes sense because that's about the weight of a typical commuter/economy car from the 70s. They didn't have as much stuff packed into the interior that we have today so they're lighter. That's why some of these MPG numbers may seem high, but they're real" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "762d3940-4f1e-40e1-9fef-67073f33791b", + "metadata": { + "execution": { + "iopub.execute_input": "2022-08-01T00:19:01.256902Z", + "iopub.status.busy": "2022-08-01T00:19:01.256753Z", + "iopub.status.idle": "2022-08-01T00:19:01.325922Z", + "shell.execute_reply": "2022-08-01T00:19:01.325506Z", + "shell.execute_reply.started": "2022-08-01T00:19:01.256887Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAHFCAYAAABxS8rQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAi4ElEQVR4nO3deXRU5f3H8c8NWYEQEQNJMAIuKJRVEAGpCeKGaF1OW6vWg6KtIAHcrVJLPEcPtlardrO2FsXWqlVBXFBcEiwmIAKRRUXQAGkhoBEhEROBfH9/+Mstk0W+1MCEyft1Ts4J99658zzzGObtzB0SmJkJAABgL+KiPQAAAHBwIBoAAIAL0QAAAFyIBgAA4EI0AAAAF6IBAAC4EA0AAMCFaAAAAC5EAwAAcCEagP/3yCOPKAiCiK/09HTl5ubqhRdeiPbwQt27d9dll122z7fbsWOH8vPzVVhY2OxjWrduncaMGaNDDz1UQRDommuuafS4Pn36qFevXg22z5o1S0EQaNiwYQ32PfbYYwqCQHPmzNmn8QRBoEceecR9mz0FQaC8vLy9HldUVKT8/Hx9/vnn/9P9AAcbogGoZ8aMGSouLlZRUZEeeughtWnTRuecc46ef/75aA/tW9mxY4duv/32/RIN1157rRYtWqS//vWvKi4u1rXXXtvocSNHjtQHH3yg8vLyiO2FhYVq166d3nnnHVVWVjbYFxcXp5NPPtk9nszMTBUXF2vMmDH7Ppl9UFRUpNtvv51oQKtBNAD19OnTR0OHDtWwYcN0/vnn64UXXlBSUpL+8Y9/RHtoLdbKlSs1ZMgQnXfeeRo6dKi6devW6HEjR46UpAbhUlhYqCuvvFJBEGjBggUN9g0cOFCHHHKIezxJSUkaOnSo0tPT92keAL4Z0QDsRXJyshITE5WQkBCx/bPPPtPVV1+trl27KjExUUceeaSmTp2qmpoaSVJ1dbUGDhyoo48+Wtu2bQtvV15eroyMDOXm5mr37t2SpMsuu0zt27fXqlWrNGrUKLVr107p6enKy8vTjh079jrGDRs26Mc//rE6d+6spKQk9erVS/fcc49qa2slff1yfd0T6O233x6+/bK3tzn2dt7CwkIFQaC1a9dq7ty54XnXrVvX6Plyc3MVBEFENFRUVGjFihUaM2aMBg0apIKCgnBfWVmZPv744zA2JGnNmjW6+OKLI8b0+9//PuJ+mnp74rnnnlO/fv2UlJSkI488Uvfff7/y8/MVBEGj433sscfUq1cvtW3bVv379494myo/P1833nijJKlHjx7h3PfHKzlAi2EAzMxsxowZJskWLlxoO3futK+++srKysps8uTJFhcXZy+//HJ47Jdffmn9+vWzdu3a2a9//WubN2+e3XbbbRYfH29nnXVWeNyHH35oqampdsEFF5iZ2e7du+2UU06xzp0728aNG8Pjxo4da4mJiXbEEUfYnXfeafPmzbP8/HyLj4+3s88+O2Kc3bp1s7Fjx4Z/3rJli3Xt2tXS09PtwQcftJdfftny8vJMkk2YMMHMzKqrq+3ll182SXbFFVdYcXGxFRcX29q1a5t8PDzn3bZtmxUXF1tGRoaddNJJ4Xmrq6ubPG///v2tZ8+e4Z+feeYZi4+Pt6qqKrv55pvthBNOCPc9+uijJslefPFFMzNbtWqVpaWlWd++fW3mzJk2b948u/766y0uLs7y8/PD25WWlpokmzFjRrht7ty5FhcXZ7m5uTZr1iz75z//aSeeeKJ1797d6v9VKMm6d+9uQ4YMsaeeespeeukly83Ntfj4ePvoo4/MzKysrMwmTZpkkuzZZ58N575t27Ym5w4c7IgG4P/VRUP9r6SkJPvDH/4QceyDDz5okuypp56K2P7LX/7SJNm8efPCbU8++aRJsvvuu89+8YtfWFxcXMR+s6+jQZLdf//9EdvvvPNOk2QLFiwIt9WPhp/97GcmyRYtWhRx2wkTJlgQBLZ69WozM/vkk09Mkk2bNs31eHjPWzemMWPGuM57zTXXmKQwmiZNmmRDhw41M7OXXnrJ2rRpEz7xXn755damTRvbvn27mZmdccYZdvjhhzd4Ys7Ly7Pk5GT77LPPzKzxaDjhhBMsOzvbampqwm2VlZXWqVOnRqOhS5cu4f2amZWXl1tcXJxNnz493Hb33XebJCstLXXNHTjY8fYEUM/MmTO1ePFiLV68WHPnztXYsWM1ceJE/e53vwuPeeONN9SuXTt9//vfj7ht3cv9r7/+erjthz/8oSZMmKAbb7xRd9xxh2699Vaddtppjd73JZdcEvHniy++WJIiXrKv74033lDv3r01ZMiQBmMxM73xxht7n/QBPG/96xoKCwuVm5srSRoxYoQk6c033wz3DR48WKmpqaqurtbrr7+u888/X23bttWuXbvCr7POOkvV1dVauHBho/f5xRdf6J133tF5552nxMTEcHv79u11zjnnNDnO1NTU8M9dunRR586dtX79+v9p3kAsIBqAenr16qXBgwdr8ODBOvPMM/WnP/1Jp59+um666abwKvmKigplZGQ0eC+8c+fOio+PV0VFRcT2cePGaefOnYqPj9fkyZMbvd/4+Hh16tQpYltGRkZ4f02pqKhQZmZmg+1ZWVl7ve032V/nzcnJUVxcnAoKClRRUaGVK1cqJydHkpSamqqBAweqsLBQGzZsUGlpaRgZFRUV2rVrl377298qISEh4uuss86SJH366aeN3ufWrVtlZurSpUuDfY1tk9RgLaSvL7D88ssv/6d5A7EgPtoDAA4G/fr10yuvvKIPP/xQQ4YMUadOnbRo0SKZWUQ4bNmyRbt27dJhhx0Wbvviiy906aWXqmfPntq8ebOuvPJKPffccw3uY9euXaqoqIh4sqr7aGJjT2B1OnXqpE2bNjXYvnHjRkmKGMu+2F/nTUtLC8Og7uOUJ510Urg/JydHBQUF6tu3r6T/vjLRsWNHtWnTRpdeeqkmTpzY6Ll79OjR6PaOHTsqCAJt3ry5wb76H/8E0DReaQAcSkpKJCn8BMKoUaNUVVWl2bNnRxw3c+bMcH+d8ePHa8OGDXr22Wf18MMPa86cOfrNb37T6P38/e9/j/jz448/Lknhy/eNGTVqlN577z0tXbq0wViCIAifdJOSkiTJ/X/K3vP+L0aOHKk1a9bo8ccf16BBgyLeBsjJyVFJSYlmz56thISEMCjatm2rkSNHatmyZerXr1/4atCeX03FVbt27TR48GDNnj1bX331Vbi9qqrqW/3DXfv6mAIHveheUgG0HHUXQs6YMSO8Ev6FF16wcePGmSQ7//zzw2PrPj2Rmppq9957r7366qs2bdo0S0hIiPj0xJ///OcGF+Tl5eVZQkJCxAWG3/TpidGjR0eMs6lPT2RkZNhDDz1kr7zyik2ePNmCILCrr766wW2PPfZYe+WVV2zx4sXfeAHfvp7XeyGkmdmLL75okiwIArvxxhsj9m3dutXi4uIsCAI76aSTIvatWrXKOnbsaEOGDLEZM2ZYQUGBzZkzx+69914bOXJkeJzn0xNPP/20nXjiidatWzcLgiDifiTZxIkTG4y7/mNfUFBgkuyqq66yoqIiW7x4ccTFk0CsIRqA/9fYpyfS0tJswIABdu+99zb4GGFFRYWNHz/eMjMzLT4+3rp162a33HJLeNzy5cstJSUl4knG7OuPPw4aNMi6d+9uW7duNbOvo6Fdu3a2fPlyy83NtZSUFDv00ENtwoQJVlVVFXH7+k9cZmbr16+3iy++2Dp16mQJCQl27LHH2t133227d++OOO61116zgQMHWlJSkklqcJ76vOfd12jYvn27xcfHmyR74YUXGuwfMGCASbKpU6c22FdaWmrjxo2zrl27WkJCgqWnp9vw4cPtjjvuiDimfjSYmc2aNcv69u0bBtpdd91lkydPto4dO0Yc540GM7NbbrnFsrKyLC4uziRZQUGB+3EADjaBmdkBf3kDQITLLrtMTz/9tKqqqqI9lFZl586dGjBggLp27ap58+ZFezhAi8eFkABajSuuuEKnnXaaMjMzVV5ergcffFDvv/++7r///mgPDTgoEA0AWo3KykrdcMMN+uSTT5SQkKDjjz9eL730kk499dRoDw04KPD2BAAAcOEjlwAAwIVoAAAALkQDAABwadYLIWtra7Vx40alpqY2+fvpAQBAy2JmqqysVFZWluLimn49oVmjYePGjcrOzm7OUwIAgAOkrKxMhx9+eJP7mzUa6v79+LKyMnXo0KE5Tw0AAPaT7du3Kzs7O+L3wDSmWaOh7i2JDh06EA0AABxk9nZpARdCAgAAF6IBAAC4EA0AAMCFaAAAAC5EAwAAcCEaAACAC9EAAABciAYAAOBCNAAAABeiAQAAuBANAADAhWgAAAAuRAMAAHAhGgAAgAvRAAAAXIgGAADgQjQAAAAXogEAALgQDQAAwIVoAAAALkQDAABwIRoAAIAL0QAAAFyIBgAA4EI0AAAAF6IBAAC4EA0AAMCFaAAAAC5EAwAAcCEaAACAC9EAAABciAYAAOASH+0BYP8wM1VXV0d7GC2emammpkaSlJSUpCAIojwiNCY5OZm1AVoAoiFGVVdXa/To0dEeBtAs5s6dq5SUlGgPA2j1eHsCAAC48EpDK1A14CJZHEvdqN07lfruE5Kkyv4/ktokRHlAqBPU7lL7kn9EexgA9sAzSStgcfE8GXq0SeBxakEs2gMA0ABvTwAAABeiAQAAuBANAADAhWgAAAAuRAMAAHAhGgAAgAvRAAAAXIgGAADgQjQAAAAXogEAALgQDQAAwIVoAAAALkQDAABwIRoAAIAL0QAAAFyIBgAA4EI0AAAAF6IBAAC4EA0AAMCFaAAAAC5EAwAAcCEaAACAC9EAAABciAYAAOBCNAAAABeiAQAAuBANAADAhWgAAAAuRAMAAHAhGgAAgAvRAAAAXIgGAADgQjQAAAAXogEAALgQDQAAwIVoAAAALkQDAABwIRoAAIAL0QAAAFyIBgAA4EI0AAAAF6IBAAC4EA0AAMCFaAAAAC5EAwAAcCEaAACAC9EAAABciAYAAOBCNAAAABeiAQAAuBANAADAhWgAAAAuRAMAAHAhGgAAgAvRAAAAXIgGAADgQjQAAAAXogEAALgQDQAAwIVoAAAALkQDAABwIRoAAIAL0QAAAFyIBgAA4EI0AAAAF6IBAAC4EA0AAMCFaAAAAC5EAwAAcImP9gD2xsxUXV0tSUpOTlYQBFEeEQAAB1ZLeS5s8a80VFdXa/To0Ro9enT4gAEA0Jq0lOfCFh8NAACgZSAaAACAC9EAAABciAYAAOBCNAAAABeiAQAAuBANAADAhWgAAAAuRAMAAHAhGgAAgAvRAAAAXIgGAADgQjQAAAAXogEAALgQDQAAwIVoAAAALkQDAABwIRoAAIAL0QAAAFyIBgAA4EI0AAAAF6IBAAC4EA0AAMCFaAAAAC5EAwAAcCEaAACAC9EAAABciAYAAOBCNAAAABeiAQAAuBANAADAhWgAAAAuRAMAAHAhGgAAgAvRAAAAXIgGAADgQjQAAAAXogEAALgQDQAAwIVoAAAALkQDAABwIRoAAIAL0QAAAFyIBgAA4EI0AAAAF6IBAAC4EA0AAMCFaAAAAC5EAwAAcCEaAACAC9EAAABciAYAAOBCNAAAABeiAQAAuBANAADAhWgAAAAuRAMAAHAhGgAAgAvRAAAAXIgGAADgQjQAAAAXogEAALgQDQAAwIVoAAAALkQDAABwIRoAAIAL0QAAAFyIBgAA4EI0AAAAF6IBAAC4EA0AAMCFaAAAAC7x0R7A3phZ+H11dXUUR3JwiXis9ngMgYMGP/tAaM+fAYvi3+nfKhpqampUU1MT/nn79u3fekCN3Ued888/v9nP3yrU7pKUGO1RAPumdlf4LT/7wH/V1NSobdu2Ubnvb/X2xPTp05WWlhZ+ZWdnN9e4AABAC/OtXmm45ZZbdN1114V/3r59e7OHQ1JSUvj9rFmzlJyc3Kznj1XV1dX//b+zuBb/LhTQ0B7/3fKzj9Zuz7/T93xePNC+1bNJUlLSfh98EATh98nJyUpJSdmv9xeT9ngMgYMGP/tAo4Io/p3OpycAAIAL0QAAAFyIBgAA4EI0AAAAF6IBAAC4EA0AAMCFaAAAAC5EAwAAcCEaAACAC9EAAABciAYAAOBCNAAAABeiAQAAuBANAADAhWgAAAAuRAMAAHAhGgAAgAvRAAAAXIgGAADgQjQAAAAXogEAALgQDQAAwIVoAAAALkQDAABwIRoAAIAL0QAAAFyIBgAA4EI0AAAAF6IBAAC4EA0AAMCFaAAAAC5EAwAAcCEaAACAC9EAAABciAYAAOBCNAAAABeiAQAAuBANAADAhWgAAAAuRAMAAHAhGgAAgAvRAAAAXIgGAADgQjQAAAAXogEAALgQDQAAwIVoAAAALkQDAABwIRoAAIAL0QAAAFyIBgAA4EI0AAAAF6IBAAC4EA0AAMCFaAAAAC5EAwAAcCEaAACAC9EAAABciAYAAOBCNAAAABeiAQAAuBANAADAhWgAAAAuRAMAAHAhGgAAgAvRAAAAXIgGAADgQjQAAAAXogEAALgQDQAAwIVoAAAALkQDAABwiY/2APYmOTlZc+fODb8HAKC1aSnPhS0+GoIgUEpKSrSHAQBA1LSU50LengAAAC5EAwAAcCEaAACAC9EAAABciAYAAOBCNAAAABeiAQAAuBANAADAhWgAAAAuRAMAAHAhGgAAgAvRAAAAXIgGAADgQjQAAAAXogEAALgQDQAAwIVoAAAALkQDAABwIRoAAIAL0QAAAFyIBgAA4EI0AAAAF6IBAAC4EA0AAMCFaAAAAC5EAwAAcCEaAACAC9EAAABciAYAAOBCNAAAABeiAQAAuBANAADAhWgAAAAuRAMAAHAhGgAAgAvRAAAAXIgGAADgQjQAAAAXogEAALgQDQAAwIVoAAAALkQDAABwIRoAAIAL0QAAAFyIBgAA4EI0AAAAF6IBAAC4EA0AAMCFaAAAAC5EAwAAcCEaAACAC9EAAABciAYAAOBCNAAAABeiAQAAuBANAADAhWgAAAAuRAMAAHAhGgAAgAvRAAAAXIgGAADgQjQAAAAXogEAALgQDQAAwIVoAAAALkQDAABwIRoAAIAL0QAAAFyIBgAA4BIf7QFg/wtqd8miPYiWavfOxr9H1AW1u6I9BAD1EA2tQPuSf0R7CAeF1HefiPYQAKBF4+0JAADgwisNMSo5OVlz586N9jBaPDNTTU2NJCkpKUlBEER5RGhMcnJytIcAQERDzAqCQCkpKdEexkGhbdu20R4CABwUeHsCAAC4EA0AAMCFaAAAAC5EAwAAcCEaAACAC9EAAABciAYAAOBCNAAAABeiAQAAuBANAADAhWgAAAAuRAMAAHAhGgAAgAvRAAAAXIgGAADgQjQAAAAXogEAALgQDQAAwIVoAAAALkQDAABwIRoAAIAL0QAAAFyIBgAA4EI0AAAAF6IBAAC4EA0AAMCFaAAAAC5EAwAAcCEaAACAC9EAAABciAYAAOBCNAAAABeiAQAAuMQ358nMTJK0ffv25jwtAADYj+qet+uex5vSrNFQWVkpScrOzm7O0wIAgAOgsrJSaWlpTe4PbG9ZsQ9qa2u1ceNGpaamKgiCBvu3b9+u7OxslZWVqUOHDs11twcN5s/8W+v8W/PcJebP/Fv+/M1MlZWVysrKUlxc01cuNOsrDXFxcTr88MP3elyHDh1a7AN3IDB/5t9a59+a5y4xf+bfsuf/Ta8w1OFCSAAA4EI0AAAAlwMaDUlJSZo2bZqSkpIO5N22GMyf+bfW+bfmuUvMn/nHzvyb9UJIAAAQu3h7AgAAuBANAADAhWgAAAAuRAMAAHDZ52h48803dc455ygrK0tBEGj27NkR+y+77DIFQRDxNXTo0IhjampqNGnSJB122GFq166dvve97+nf//53xDFbt27VpZdeqrS0NKWlpenSSy/V559/vs8TbE7Tp0/XCSecoNTUVHXu3FnnnXeeVq9eHXGMmSk/P19ZWVlKSUlRbm6uVq1aFXFMLM8/ltf/j3/8o/r16xf+Ay3Dhg3T3Llzw/2xvPbS3ucfy2tf3/Tp0xUEga655ppwW6yv/54am3+sr39+fn6D+WVkZIT7W8362z566aWXbOrUqfbMM8+YJJs1a1bE/rFjx9qZZ55pmzZtCr8qKioijhk/frx17drVXn31VVu6dKmNHDnS+vfvb7t27QqPOfPMM61Pnz5WVFRkRUVF1qdPHzv77LP3dbjN6owzzrAZM2bYypUrraSkxMaMGWNHHHGEVVVVhcfcddddlpqaas8884ytWLHCLrzwQsvMzLTt27eHx8Ty/GN5/efMmWMvvviirV692lavXm233nqrJSQk2MqVK80sttfebO/zj+W139Pbb79t3bt3t379+tmUKVPC7bG+/nWamn+sr/+0adPsO9/5TsT8tmzZEu5vLeu/z9EQceMmouHcc89t8jaff/65JSQk2BNPPBFu+89//mNxcXH28ssvm5nZe++9Z5Js4cKF4THFxcUmyT744INvM+RmtWXLFpNk8+fPNzOz2tpay8jIsLvuuis8prq62tLS0uzBBx80s9iev1nrWn8zs44dO9pf/vKXVrf2dermb9Y61r6ystKOOeYYe/XVVy0nJyd80mwt69/U/M1if/2nTZtm/fv3b3Rfa1l/M7P9ck1DYWGhOnfurJ49e+onP/mJtmzZEu5bsmSJdu7cqdNPPz3clpWVpT59+qioqEiSVFxcrLS0NJ144onhMUOHDlVaWlp4TEuwbds2SdKhhx4qSSotLVV5eXnE3JKSkpSTkxOOO5bnX6c1rP/u3bv1xBNP6IsvvtCwYcNa3drXn3+dWF/7iRMnasyYMTr11FMjtreW9W9q/nViff3XrFmjrKws9ejRQz/60Y/08ccfS2o96y818y+skqTRo0frBz/4gbp166bS0lLddtttOuWUU7RkyRIlJSWpvLxciYmJ6tixY8TtunTpovLycklSeXm5Onfu3ODcnTt3Do+JNjPTddddpxEjRqhPnz6SFI6tS5cuEcd26dJF69evD4+J1flLsb/+K1as0LBhw1RdXa327dtr1qxZ6t27d/gDHetr39T8pdhf+yeeeEJLly7V4sWLG+xrDT/73zR/KfbX/8QTT9TMmTPVs2dPbd68WXfccYeGDx+uVatWtYr1r9Ps0XDhhReG3/fp00eDBw9Wt27d9OKLL+qCCy5o8nZmFvHrtBv71dr1j4mmvLw8LV++XAsWLGiwr/4YPeOOlfnH+vofe+yxKikp0eeff65nnnlGY8eO1fz588P9sb72Tc2/d+/eMb32ZWVlmjJliubNm6fk5OQmj4vV9ffMP5bXX/o6iur07dtXw4YN01FHHaVHH300vOAzVtd/T/v9I5eZmZnq1q2b1qxZI0nKyMjQV199pa1bt0Yct2XLlrDSMjIytHnz5gbn+uSTTxqUXDRMmjRJc+bMUUFBQcSvAq+7krZ+EdafW6zOvzGxtv6JiYk6+uijNXjwYE2fPl39+/fX/fff32rWvqn5NyaW1n7JkiXasmWLBg0apPj4eMXHx2v+/Pl64IEHFB8fH44tVtd/b/PfvXt3g9vE0vo3pl27durbt6/WrFnTan7+pQMQDRUVFSorK1NmZqYkadCgQUpISNCrr74aHrNp0yatXLlSw4cPlyQNGzZM27Zt09tvvx0es2jRIm3bti08JhrMTHl5eXr22Wf1xhtvqEePHhH7e/TooYyMjIi5ffXVV5o/f3447lief2Niaf0bY2aqqamJ+bVvSt38GxNLaz9q1CitWLFCJSUl4dfgwYN1ySWXqKSkREceeWRMr//e5t+mTZsGt4ml9W9MTU2N3n//fWVmZraun/99vXKysrLSli1bZsuWLTNJdu+999qyZcts/fr1VllZaddff70VFRVZaWmpFRQU2LBhw6xr164NPnZy+OGH22uvvWZLly61U045pdGPnfTr18+Ki4utuLjY+vbtG/WPnUyYMMHS0tKssLAw4mM3O3bsCI+56667LC0tzZ599llbsWKFXXTRRY1+7CYW5x/r63/LLbfYm2++aaWlpbZ8+XK79dZbLS4uzubNm2dmsb32Zt88/1hf+8bU//RArK9/fXvOvzWs//XXX2+FhYX28ccf28KFC+3ss8+21NRUW7dunZm1nvXf52goKCgwSQ2+xo4dazt27LDTTz/d0tPTLSEhwY444ggbO3asbdiwIeIcX375peXl5dmhhx5qKSkpdvbZZzc4pqKiwi655BJLTU211NRUu+SSS2zr1q3farLfVmPzlmQzZswIj6mtrbVp06ZZRkaGJSUl2cknn2wrVqyIOE+szj/W13/cuHHWrVs3S0xMtPT0dBs1alQYDGaxvfZm3zz/WF/7xtSPhlhf//r2nH9rWP+6f3chISHBsrKy7IILLrBVq1aF+1vL+vOrsQEAgAu/ewIAALgQDQAAwIVoAAAALkQDAABwIRoAAIAL0QAAAFyIBgAA4EI0APhG3bt313333ec+ft26dQqCQCUlJfttTACig2gA8I0WL16sn/70p816zkceeUSHHHJIs54TwP7X7L8aG0BsSU9Pj/YQALQQvNIAxJjnn39ehxxyiGprayVJJSUlCoJAN954Y3jMVVddpYsuukiSVFRUpJNPPlkpKSnKzs7W5MmT9cUXX4TH1n974oMPPtCIESOUnJys3r1767XXXlMQBJo9e3bEOD7++GONHDlSbdu2Vf/+/VVcXCxJKiws1OWXX65t27YpCAIFQaD8/Pz982AAaFZEAxBjTj75ZFVWVmrZsmWSpPnz5+uwww7T/Pnzw2MKCwuVk5OjFStW6IwzztAFF1yg5cuX68knn9SCBQuUl5fX6Llra2t13nnnqW3btlq0aJEeeughTZ06tdFjp06dqhtuuEElJSXq2bOnLrroIu3atUvDhw/Xfffdpw4dOmjTpk3atGmTbrjhhuZ/IAA0O6IBiDFpaWkaMGCACgsLJX0dCNdee63effddVVZWqry8XB9++KFyc3N199136+KLL9Y111yjY445RsOHD9cDDzygmTNnqrq6usG5582bp48++kgzZ85U//79NWLECN15552NjuOGG27QmDFj1LNnT91+++1av3691q5dq8TERKWlpSkIAmVkZCgjI0Pt27ffnw8JgGZCNAAxKDc3V4WFhTIz/etf/9K5556rPn36aMGCBSooKFCXLl103HHHacmSJXrkkUfUvn378OuMM85QbW2tSktLG5x39erVys7OVkZGRrhtyJAhjY6hX79+4feZmZmSpC1btjTzTAEcSFwICcSg3NxcPfzww3r33XcVFxen3r17KycnR/Pnz9fWrVuVk5Mj6eu3G6666ipNnjy5wTmOOOKIBtvMTEEQuMaQkJAQfl93m7rrLAAcnIgGIAbVXddw3333KScnR0EQKCcnR9OnT9fWrVs1ZcoUSdLxxx+vVatW6eijj3ad97jjjtOGDRu0efNmdenSRdLXH8ncV4mJidq9e/c+3w5AdPH2BBCD6q5r+Nvf/qbc3FxJX4fE0qVLw+sZJOnmm29WcXGxJk6cqJKSEq1Zs0Zz5szRpEmTGj3vaaedpqOOOkpjx47V8uXL9dZbb4UXQnpfgZC+/kRGVVWVXn/9dX366afasWPHt5ovgAODaABi1MiRI7V79+4wEDp27KjevXsrPT1dvXr1kvT1dQfz58/XmjVr9N3vflcDBw7UbbfdFl6DUF+bNm00e/ZsVVVV6YQTTtCVV16pn//855Kk5ORk99iGDx+u8ePH68ILL1R6erp+9atffbvJAjggAjOzaA8CwMHrrbfe0ogRI7R27VodddRR0R4OgP2IaACwT2bNmqX27dvrmGOO0dq1azVlyhR17NhRCxYsiPbQAOxnXAgJYJ9UVlbqpptuUllZmQ477DCdeuqpuueee6I9LAAHAK80AAAAFy6EBAAALkQDAABwIRoAAIAL0QAAAFyIBgAA4EI0AAAAF6IBAAC4EA0AAMCFaAAAAC7/ByctCYt+nJveAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x=df.weight)\n", + "plt.title('Boxplot of Weight')\n", + "plt.show();" + ] + }, + { + "cell_type": "markdown", + "id": "6cfba8d4-ac12-44bb-8917-22ed65f513b2", + "metadata": {}, + "source": [ + "Nothing out of the ordinary here" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "acd58565-0abe-4245-b505-81fa56a0e106", + "metadata": { + "execution": { + "iopub.execute_input": "2022-08-01T00:19:01.326907Z", + "iopub.status.busy": "2022-08-01T00:19:01.326552Z", + "iopub.status.idle": "2022-08-01T00:19:01.473926Z", + "shell.execute_reply": "2022-08-01T00:19:01.473358Z", + "shell.execute_reply.started": "2022-08-01T00:19:01.326892Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAH+CAYAAABTKk23AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8uUlEQVR4nO3de1yUZf7/8fd4Gg4CeWQgBakINU+VflXKxUNSluZmbZlpuB1WV7PM7We5bol9WyzbzC3NshS11qw2NXctE/PQATXyUGpoJxUriSATFASF6/dHP+bnyEHBgbnQ1/PxmMejue7r/szn9p7pzT1zz9wOY4wRAACwUj1fNwAAACpGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlCj1ixYsEAOh8N98/Pzk8vlUp8+fTRt2jRlZWWVWScxMVEOh6NKj5Ofn6/ExEStX7++SuuV91ht2rTRwIEDq1TndBYvXqyZM2eWu8zhcCgxMdGrj+dtH3zwgbp27arAwEA5HA4tX778tOvs2LFDDodDDRs21MGDB2u+yTNQneeWN6WmpioxMVG//vprmWW9e/dW7969a70n2ImgRq1LTk7Wxo0blZKSotmzZ6tLly566qmn1K5dO61Zs8Zj7j333KONGzdWqX5+fr6mTp1a5aCuzmNVR2VBvXHjRt1zzz013kN1GWN06623qmHDhlqxYoU2btyouLi40673yiuvSJJOnDihRYsW1XSbdUJqaqqmTp1ablC/8MILeuGFF2q/KVipga8bwPmnQ4cO6tq1q/v+zTffrAcffFBXX321hgwZoq+//lqhoaGSpFatWqlVq1Y12k9+fr4CAgJq5bFOp0ePHj59/NP58ccf9csvv+imm25Sv379zmidwsJC/etf/1Lnzp2VnZ2t+fPn6+GHH67hTmtf6fPIG9q3b++VOjg3cEQNK0REROiZZ55RXl6eXnrpJfd4eW9Prl27Vr1791azZs3k7++viIgI3XzzzcrPz9e+ffvUokULSdLUqVPdb7OPHDnSo97WrVt1yy23qEmTJrr44osrfKxSy5YtU6dOneTn56eLLrpIzz33nMfy0rf19+3b5zG+fv16ORwO99F97969tXLlSu3fv9/jY4BS5b31vXPnTg0ePFhNmjSRn5+funTpooULF5b7OK+//romT56s8PBwBQcH65prrtGePXsq/oc/yccff6x+/fopKChIAQEBio2N1cqVK93LExMT3X/IPPzww3I4HGrTps1p6y5fvlw5OTm65557lJCQoK+++koff/xxmXmFhYV6/PHH1a5dO/n5+alZs2bq06ePUlNT3XNKSkr0/PPPq0uXLvL399cFF1ygHj16aMWKFR613njjDfXs2VOBgYFq3Lixrr32Wm3btu2M/h3OZN2RI0eqcePG2rFjh+Lj4xUUFOT+wyUlJUWDBw9Wq1at5Ofnp0suuUSjRo1Sdna2x7/l//k//0eSFBUV5X4enPw8OfWt719++UVjxozRhRdeqEaNGumiiy7S5MmTVVhY6DHP4XDovvvu06uvvqp27dopICBAnTt31n//+98z2n7Yh6CGNa6//nrVr19fH374YYVz9u3bpxtuuEGNGjXS/PnztWrVKj355JMKDAxUUVGRwsLCtGrVKknS3XffrY0bN2rjxo169NFHPeoMGTJEl1xyid566y29+OKLlfa1fft2jR8/Xg8++KCWLVum2NhYPfDAA/rHP/5R5W184YUXdNVVV8nlcrl7q+zt9j179ig2Nla7du3Sc889p6VLl6p9+/YaOXKkpk+fXmb+X//6V+3fv1+vvPKK5s6dq6+//lqDBg1ScXFxpX1t2LBBffv21eHDhzVv3jy9/vrrCgoK0qBBg/TGG29I+u2jgaVLl0qSxo0bp40bN2rZsmWn3eZ58+bJ6XTqjjvu0F133SWHw6F58+Z5zDlx4oQGDBig//3f/9XAgQO1bNkyLViwQLGxscrIyHDPGzlypB544AF169ZNb7zxhpYsWaIbb7zR4w+kpKQk3X777Wrfvr3efPNNvfrqq8rLy1OvXr305ZdfVtprVdYtKirSjTfeqL59++qdd97R1KlTJUnffvutevbsqTlz5mj16tV67LHHtHnzZl199dU6fvy4+99y3LhxkqSlS5e6nwdXXHFFuX0dO3ZMffr00aJFizRhwgStXLlSw4cP1/Tp0zVkyJAy81euXKlZs2bp8ccf19tvv62mTZvqpptu0nfffVfp9sNSBqglycnJRpJJS0urcE5oaKhp166d+/6UKVPMyU/Tf//730aS2b59e4U1fv75ZyPJTJkypcyy0nqPPfZYhctOFhkZaRwOR5nH69+/vwkODjZHjx712La9e/d6zFu3bp2RZNatW+ceu+GGG0xkZGS5vZ/a99ChQ43T6TQZGRke8wYMGGACAgLMr7/+6vE4119/vce8N99800gyGzduLPfxSvXo0cO0bNnS5OXlucdOnDhhOnToYFq1amVKSkqMMcbs3bvXSDJPP/10pfVK7du3z9SrV88MHTrUPRYXF2cCAwNNbm6ue2zRokVGknn55ZcrrPXhhx8aSWby5MkVzsnIyDANGjQw48aN8xjPy8szLpfL3Hrrre6xU/d3VdZNSEgwksz8+fMr2XpjSkpKzPHjx83+/fuNJPPOO++4lz399NPlPmeM+e3fKC4uzn3/xRdfNJLMm2++6THvqaeeMpLM6tWr3WOSTGhoqMe/b2ZmpqlXr56ZNm1apf3CThxRwyrmNJdH79Klixo1aqQ//elPWrhwYbWPEG6++eYznnvZZZepc+fOHmPDhg1Tbm6utm7dWq3HP1Nr165Vv3791Lp1a4/xkSNHKj8/v8zR+I033uhxv1OnTpKk/fv3V/gYR48e1ebNm3XLLbeocePG7vH69etrxIgR+v7778/47fNTJScnq6SkRHfddZd77K677tLRo0fdR+qS9N5778nPz89j3qnee+89SdLYsWMrnPP+++/rxIkTuvPOO3XixAn3zc/PT3FxcZWeYFiddct7HmVlZWn06NFq3bq1GjRooIYNGyoyMlKSlJ6eXuHjV2bt2rUKDAzULbfc4jFe+pHOBx984DHep08fBQUFue+HhoaqZcuWlT4PYC9OJoM1jh49qpycHHXs2LHCORdffLHWrFmj6dOna+zYsTp69Kguuugi3X///XrggQfO+LHCwsLOeK7L5apwLCcn54zrVEdOTk65vYaHh5f7+M2aNfO473Q6JUkFBQUVPsahQ4dkjKnS45yJkpISLViwQOHh4bryyivdZzdfc801CgwM1Lx589xnuP/8888KDw9XvXoVHzv8/PPPql+/frn7o9RPP/0kSerWrVu5yyurX9V1AwICFBwc7DFWUlKi+Ph4/fjjj3r00UfVsWNHBQYGqqSkRD169Kh0P1QmJydHLperzDkULVu2VIMGDU77PJB+ey5U9/HhWwQ1rLFy5UoVFxef9vujvXr1Uq9evVRcXKzPPvtMzz//vMaPH6/Q0FANHTr0jB6rKt+fzczMrHCs9H+Ifn5+klTmxJ6TTyCqjmbNmpX7veMff/xRktS8efOzqi9JTZo0Ub169bz+OGvWrHEfwZUXHJs2bdKXX36p9u3bq0WLFvr4449VUlJSYZi2aNFCxcXFyszMrPAPrdI+//3vf7uPYs9UVdct7zm0c+dOff7551qwYIESEhLc4998802VejlVs2bNtHnzZhljPB43KytLJ06c8MrzAPbirW9YISMjQw899JBCQkI0atSoM1qnfv366t69u2bPni1J7rehz+Qosip27dqlzz//3GNs8eLFCgoKcp/8U3r28xdffOEx79SzkUv7O9Pe+vXrp7Vr17oDs9SiRYsUEBDgla9zBQYGqnv37lq6dKlHXyUlJXrttdfUqlUrXXrppVWuO2/ePNWrV0/Lly/XunXrPG6vvvqqJGn+/PmSpAEDBujYsWNasGBBhfUGDBggSZozZ06Fc6699lo1aNBA3377rbp27VrurSbWLVUaoqXPwVInf5OhVFWep/369dORI0fK/LhM6XfSz/SrcqibOKJGrdu5c6f787+srCx99NFHSk5OVv369bVs2TL316vK8+KLL2rt2rW64YYbFBERoWPHjrn/Z3/NNddIkoKCghQZGal33nlH/fr1U9OmTdW8efMz+ipRecLDw3XjjTcqMTFRYWFheu2115SSkqKnnnrK/b3Zbt26KSYmRg899JBOnDihJk2aaNmyZeV+Daljx45aunSp5syZoyuvvFL16tWrMASmTJmi//73v+rTp48ee+wxNW3aVP/617+0cuVKTZ8+XSEhIdXaplNNmzZN/fv3V58+ffTQQw+pUaNGeuGFF7Rz5069/vrrVf4Fr5ycHL3zzju69tprNXjw4HLnPPvss1q0aJGmTZum22+/XcnJyRo9erT27NmjPn36qKSkRJs3b1a7du00dOhQ9erVSyNGjNATTzyhn376SQMHDpTT6dS2bdsUEBCgcePGqU2bNnr88cc1efJkfffdd7ruuuvUpEkT/fTTT/r0008VGBjoPjv7VGezbqm2bdvq4osv1iOPPCJjjJo2bar//Oc/SklJKTO39COef/7zn0pISFDDhg0VExPj8dlyqTvvvFOzZ89WQkKC9u3bp44dO+rjjz9WUlKSrr/+evdzH+co357LhvNJ6ZnRpbdGjRqZli1bmri4OJOUlGSysrLKrHPqmbkbN240N910k4mMjDROp9M0a9bMxMXFmRUrVnist2bNGnP55Zcbp9NpJJmEhASPej///PNpH8uY3876vuGGG8y///1vc9lll5lGjRqZNm3amBkzZpRZ/6uvvjLx8fEmODjYtGjRwowbN86sXLmyzFnfv/zyi7nlllvMBRdcYBwOh8djqpyz1Xfs2GEGDRpkQkJCTKNGjUznzp1NcnKyx5zSs77feustj/HSs7RPnV+ejz76yPTt29cEBgYaf39/06NHD/Of//yn3HqnO+t75syZRpJZvnx5hXNKz2R+++23jTHGFBQUmMcee8xER0ebRo0amWbNmpm+ffua1NRU9zrFxcXm2WefNR06dDCNGjUyISEhpmfPnmX6XL58uenTp48JDg42TqfTREZGmltuucWsWbPGPae8/X2m6yYkJJjAwMByt+vLL780/fv3N0FBQaZJkybmD3/4g8nIyCh3306aNMmEh4ebevXqeTxPTj3r2xhjcnJyzOjRo01YWJhp0KCBiYyMNJMmTTLHjh3zmCfJjB07tkxfkZGR7tcB6haHMac5zRYAAPgMn1EDAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALDYOR/Uxhjl5uae9mIPAADY6JwP6ry8PIWEhCgvL8/XrQAAUGXnfFADAFCXEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWKyBrxsAzgcZGRnKzs72Wr3mzZsrIiLCa/UA2IugBmpYRkaG2rZtp4KCfK/V9PcP0O7d6YQ1cB4gqIEalp2drYKCfHW/a4qCw9qcdb3cg/u0ef5UZWdnE9TAeYCgBmpJcFgbNY2I8XUbAOoYn59M9sMPP2j48OFq1qyZAgIC1KVLF23ZssW93BijxMREhYeHy9/fX71799auXbt82DEAALXHp0F96NAhXXXVVWrYsKHee+89ffnll3rmmWd0wQUXuOdMnz5dM2bM0KxZs5SWliaXy6X+/fsrLy/Pd40DAFBLfPrW91NPPaXWrVsrOTnZPdamTRv3fxtjNHPmTE2ePFlDhgyRJC1cuFChoaFavHixRo0aVdstAwBQq3x6RL1ixQp17dpVf/jDH9SyZUtdfvnlevnll93L9+7dq8zMTMXHx7vHnE6n4uLilJqaWm7NwsJC5ebmetwAAKirfBrU3333nebMmaPo6Gi9//77Gj16tO6//34tWrRIkpSZmSlJCg0N9VgvNDTUvexU06ZNU0hIiPvWunXrmt0IAABqkE+DuqSkRFdccYWSkpJ0+eWXa9SoUbr33ns1Z84cj3kOh8PjvjGmzFipSZMm6fDhw+7bgQMHaqx/AABqmk+DOiwsTO3bt/cYa9eunTIyMiRJLpdLksocPWdlZZU5yi7ldDoVHBzscQMAoK7yaVBfddVV2rNnj8fYV199pcjISElSVFSUXC6XUlJS3MuLioq0YcMGxcbG1mqvAAD4gk/P+n7wwQcVGxurpKQk3Xrrrfr00081d+5czZ07V9Jvb3mPHz9eSUlJio6OVnR0tJKSkhQQEKBhw4b5snUAAGqFT4O6W7duWrZsmSZNmqTHH39cUVFRmjlzpu644w73nIkTJ6qgoEBjxozRoUOH1L17d61evVpBQUE+7BwAgNrh858QHThwoAYOHFjhcofDocTERCUmJtZeUwAAWMLnPyEKAAAqRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWKyBrxsA4HsZGRnKzs72Wr3mzZsrIiLCa/WA8xlBDZznMjIy1LZtOxUU5Hutpr9/gHbvTiesAS8gqIHzXHZ2tgoK8tX9rikKDmtz1vVyD+7T5vlTlZ2dTVADXuDToE5MTNTUqVM9xkJDQ5WZmSlJMsZo6tSpmjt3rg4dOqTu3btr9uzZuuyyy3zRLnBOCw5ro6YRMb5uA8ApfH4y2WWXXaaDBw+6bzt27HAvmz59umbMmKFZs2YpLS1NLpdL/fv3V15eng87BgCg9vg8qBs0aCCXy+W+tWjRQtJvR9MzZ87U5MmTNWTIEHXo0EELFy5Ufn6+Fi9e7OOuAQCoHT4P6q+//lrh4eGKiorS0KFD9d1330mS9u7dq8zMTMXHx7vnOp1OxcXFKTU11VftAgBQq3z6GXX37t21aNEiXXrppfrpp5/0xBNPKDY2Vrt27XJ/Th0aGuqxTmhoqPbv319hzcLCQhUWFrrv5+bm1kzzAADUAp8G9YABA9z/3bFjR/Xs2VMXX3yxFi5cqB49ekiSHA6HxzrGmDJjJ5s2bVqZE9QAAKirfP7W98kCAwPVsWNHff3113K5XJLkPrIulZWVVeYo+2STJk3S4cOH3bcDBw7UaM8AANQkq4K6sLBQ6enpCgsLU1RUlFwul1JSUtzLi4qKtGHDBsXGxlZYw+l0Kjg42OMGAEBd5dO3vh966CENGjRIERERysrK0hNPPKHc3FwlJCTI4XBo/PjxSkpKUnR0tKKjo5WUlKSAgAANGzbMl20DAFBrfBrU33//vW6//XZlZ2erRYsW6tGjhzZt2qTIyEhJ0sSJE1VQUKAxY8a4f/Bk9erVCgoK8mXbAADUGp8G9ZIlSypd7nA4lJiYqMTExNppCAAAy1j1GTUAAPBEUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYj69ehaA6ktPT7eqDoCaQVADdUzB4RxJDg0fPtyrdY8XFnm1HgDvIKiBOuZ4fp4koy7DHlaLqLZnXe/gjo3auWKuTpw4cfbNAfA6ghqooxq3jFDTiJizrpN7cN/ZNwOgxnAyGQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYLEGvm4AsE1GRoays7O9Vi89Pd1rtQCcfwhq4CQZGRlq27adCgryvV77eGGR12sCOPcR1MBJsrOzVVCQr+53TVFwWBuv1Dy4Y6N2rpirEydOeKUegPMLQQ2UIzisjZpGxHilVu7BfV6pA+D8xMlkAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsZk1QT5s2TQ6HQ+PHj3ePGWOUmJio8PBw+fv7q3fv3tq1a5fvmgQAoJZZEdRpaWmaO3euOnXq5DE+ffp0zZgxQ7NmzVJaWppcLpf69++vvLw8H3UKAEDt8nlQHzlyRHfccYdefvllNWnSxD1ujNHMmTM1efJkDRkyRB06dNDChQuVn5+vxYsX+7BjAABqj8+DeuzYsbrhhht0zTXXeIzv3btXmZmZio+Pd485nU7FxcUpNTW1wnqFhYXKzc31uAEAUFf59CdElyxZoq1btyotLa3MsszMTElSaGiox3hoaKj2799fYc1p06Zp6tSp3m0UAAAf8dkR9YEDB/TAAw/otddek5+fX4XzHA6Hx31jTJmxk02aNEmHDx923w4cOOC1ngEAqG0+O6LesmWLsrKydOWVV7rHiouL9eGHH2rWrFnas2ePpN+OrMPCwtxzsrKyyhxln8zpdMrpdNZc4wAA1CKfHVH369dPO3bs0Pbt2923rl276o477tD27dt10UUXyeVyKSUlxb1OUVGRNmzYoNjYWF+1DQBArfLZEXVQUJA6dOjgMRYYGKhmzZq5x8ePH6+kpCRFR0crOjpaSUlJCggI0LBhw3zRMgAAtc7q61FPnDhRBQUFGjNmjA4dOqTu3btr9erVCgoK8nVrAADUCquCev369R73HQ6HEhMTlZiY6JN+AFRfenq612o1b95cERERXqsH1CVWBTWAuq/gcI4kh4YPH+61mv7+Adq9O52wxnmJoAbgVcfz8yQZdRn2sFpEtT3rerkH92nz/KnKzs4mqHFeIqgB1IjGLSPUNCLG120AdZ7Pf0IUAABUjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYrFpBfdFFFyknJ6fM+K+//qqLLrrorJsCAAC/qVZQ79u3T8XFxWXGCwsL9cMPP5x1UwAA4DcNqjJ5xYoV7v9+//33FRIS4r5fXFysDz74QG3atPFacwAAnO+qFNS///3vJUkOh0MJCQkeyxo2bKg2bdromWee8VpzAACc76oU1CUlJZKkqKgopaWlqXnz5jXSFAAA+E2VgrrU3r17vd0HAAAoR7WCWpI++OADffDBB8rKynIfaZeaP3/+WTcGAACqGdRTp07V448/rq5duyosLEwOh8PbfQEAAFUzqF988UUtWLBAI0aM8HY/AADgJNX6HnVRUZFiY2O93QsAADhFtYL6nnvu0eLFi73dCwAAOEW13vo+duyY5s6dqzVr1qhTp05q2LChx/IZM2Z4pTngTGRkZCg7O9srtdLT071SBwC8pVpB/cUXX6hLly6SpJ07d3os48Qy1KaMjAy1bdtOBQX5Xq17vLDIq/UAoLqqFdTr1q3zdh9AtWRnZ6ugIF/d75qi4LA2Z13v4I6N2rlirk6cOHH2zQGAF1T7e9SATYLD2qhpRMxZ18k9uO/smwEAL6pWUPfp06fSt7jXrl1b7YYAAMD/V62gLv18utTx48e1fft27dy5s8zFOgAAQPVVK6ifffbZcscTExN15MiRs2oIAAD8f9X6HnVFhg8fzu98AwDgRV4N6o0bN8rPz8+bJQEAOK9V663vIUOGeNw3xujgwYP67LPP9Oijj3qlMQAAUM2gDgkJ8bhfr149xcTE6PHHH1d8fLxXGgMAANUM6uTkZG/3AQAAynFWP3iyZcsWpaeny+FwqH379rr88su91RcAAFA1gzorK0tDhw7V+vXrdcEFF8gYo8OHD6tPnz5asmSJWrRo4e0+AQA4L1XrrO9x48YpNzdXu3bt0i+//KJDhw5p586dys3N1f333+/tHgEAOG9V64h61apVWrNmjdq1a+cea9++vWbPns3JZAAAeFG1jqhLSkrKXINakho2bKiSkpKzbgoAAPymWkHdt29fPfDAA/rxxx/dYz/88IMefPBB9evX74zrzJkzR506dVJwcLCCg4PVs2dPvffee+7lxhglJiYqPDxc/v7+6t27t3bt2lWdlgEAqJOqFdSzZs1SXl6e2rRpo4svvliXXHKJoqKilJeXp+eff/6M67Rq1UpPPvmkPvvsM3322Wfq27evBg8e7A7j6dOna8aMGZo1a5bS0tLkcrnUv39/5eXlVadtAADqnGp9Rt26dWtt3bpVKSkp2r17t4wxat++va655poq1Rk0aJDH/b///e+aM2eONm3apPbt22vmzJmaPHmy+5fQFi5cqNDQUC1evFijRo2qTusAANQpVTqiXrt2rdq3b6/c3FxJUv/+/TVu3Djdf//96tatmy677DJ99NFH1WqkuLhYS5Ys0dGjR9WzZ0/t3btXmZmZHienOZ1OxcXFKTU1tcI6hYWFys3N9bgBAFBXVSmoZ86cqXvvvVfBwcFlloWEhGjUqFGaMWNGlRrYsWOHGjduLKfTqdGjR2vZsmVq3769MjMzJUmhoaEe80NDQ93LyjNt2jSFhIS4b61bt65SPwAA2KRKQf3555/ruuuuq3B5fHy8tmzZUqUGYmJitH37dm3atEl//vOflZCQoC+//NK93OFweMw3xpQZO9mkSZN0+PBh9+3AgQNV6gcAAJtU6TPqn376qdyvZbmLNWign3/+uUoNNGrUSJdccokkqWvXrkpLS9M///lPPfzww5KkzMxMhYWFuednZWWVOco+mdPplNPprFIPAADYqkpH1BdeeKF27NhR4fIvvvjCI1SrwxijwsJCRUVFyeVyKSUlxb2sqKhIGzZsUGxs7Fk9BgAAdUWVjqivv/56PfbYYxowYID8/Pw8lhUUFGjKlCkaOHDgGdf761//qgEDBqh169bKy8vTkiVLtH79eq1atUoOh0Pjx49XUlKSoqOjFR0draSkJAUEBGjYsGFVaRsAgDqrSkH9t7/9TUuXLtWll16q++67TzExMXI4HEpPT9fs2bNVXFysyZMnn3G9n376SSNGjNDBgwcVEhKiTp06adWqVerfv78kaeLEiSooKNCYMWN06NAhde/eXatXr1ZQUFDVthIAgDqqSkEdGhqq1NRU/fnPf9akSZNkjJH02wlf1157rV544YVKPz8+1bx58ypd7nA4lJiYqMTExKq0CQDAOaPKP3gSGRmpd999V4cOHdI333wjY4yio6PVpEmTmugPAIDzWrV+mUySmjRpom7dunmzFwAAcIpq/dY3AACoHQQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFqv2T4gCQG1KT0/3ar3mzZsrIiLCqzWBmkBQA7BaweEcSQ4NHz7cq3X9/QO0e3c6YQ3rEdQArHY8P0+SUZdhD6tFVFuv1Mw9uE+b509VdnY2QQ3rEdQA6oTGLSPUNCLG120AtY6TyQAAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgsQa+bgAAfCU9Pd1rtZo3b66IiAiv1QNKEdQAzjsFh3MkOTR8+HCv1fT3D9Du3emENbyOoAZw3jmenyfJqMuwh9Uiqu1Z18s9uE+b509VdnY2QQ2v82lQT5s2TUuXLtXu3bvl7++v2NhYPfXUU4qJiXHPMcZo6tSpmjt3rg4dOqTu3btr9uzZuuyyy3zYOYBzQeOWEWoaEXP6iYAP+fRksg0bNmjs2LHatGmTUlJSdOLECcXHx+vo0aPuOdOnT9eMGTM0a9YspaWlyeVyqX///srLy/Nh5wAA1A6fHlGvWrXK435ycrJatmypLVu26He/+52MMZo5c6YmT56sIUOGSJIWLlyo0NBQLV68WKNGjfJF2wAA1Bqrvp51+PBhSVLTpk0lSXv37lVmZqbi4+Pdc5xOp+Li4pSamlpujcLCQuXm5nrcAACoq6wJamOMJkyYoKuvvlodOnSQJGVmZkqSQkNDPeaGhoa6l51q2rRpCgkJcd9at25ds40DAFCDrAnq++67T1988YVef/31MsscDofHfWNMmbFSkyZN0uHDh923AwcO1Ei/AADUBiu+njVu3DitWLFCH374oVq1auUed7lckn47sg4LC3OPZ2VllTnKLuV0OuV0Omu2YQAAaolPj6iNMbrvvvu0dOlSrV27VlFRUR7Lo6Ki5HK5lJKS4h4rKirShg0bFBsbW9vtAgBQ63x6RD127FgtXrxY77zzjoKCgtyfO4eEhMjf318Oh0Pjx49XUlKSoqOjFR0draSkJAUEBGjYsGG+bB0AgFrh06CeM2eOJKl3794e48nJyRo5cqQkaeLEiSooKNCYMWPcP3iyevVqBQUF1XK3AADUPp8GtTHmtHMcDocSExOVmJhY8w2hXBkZGcrOzvZaPS5eAABnzoqTyWCvjIwMtW3bTgUF+V6rycULAODMEdSoVHZ2tgoK8tX9rikKDmtz1vW4eAEAVA1BjTMSHNaGixcAgA9Y84MnAACgLIIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFmvg6wZwfkpPT7eqDgDYiqBGrSo4nCPJoeHDh3u17vHCIq/WAwBbENSoVcfz8yQZdRn2sFpEtT3regd3bNTOFXN14sSJs28OACxEUMMnGreMUNOImLOuk3tw39k3AwAW42QyAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFGvi6AQA4V6Snp3utVvPmzRUREeG1eqi7CGoAOEsFh3MkOTR8+HCv1fT3D9Du3emENQhqADhbx/PzJBl1GfawWkS1Pet6uQf3afP8qcrOziaoQVADgLc0bhmhphExvm4D5xifnkz24YcfatCgQQoPD5fD4dDy5cs9lhtjlJiYqPDwcPn7+6t3797atWuXb5oFAMAHfBrUR48eVefOnTVr1qxyl0+fPl0zZszQrFmzlJaWJpfLpf79+ysvL6+WOwUAwDd8+tb3gAEDNGDAgHKXGWM0c+ZMTZ48WUOGDJEkLVy4UKGhoVq8eLFGjRpVm60CAOAT1n5GvXfvXmVmZio+Pt495nQ6FRcXp9TU1AqDurCwUIWFhe77ubm5Nd4rANQEvu4FyeKgzszMlCSFhoZ6jIeGhmr//v0Vrjdt2jRNnTq1RnsDgJrE171wMmuDupTD4fC4b4wpM3aySZMmacKECe77ubm5at26dY31BwDexte9cDJrg9rlckn67cg6LCzMPZ6VlVXmKPtkTqdTTqezxvsDgJrG170gWfxb31FRUXK5XEpJSXGPFRUVacOGDYqNjfVhZwAA1B6fHlEfOXJE33zzjfv+3r17tX37djVt2lQREREaP368kpKSFB0drejoaCUlJSkgIEDDhg3zYdcAANQenwb1Z599pj59+rjvl362nJCQoAULFmjixIkqKCjQmDFjdOjQIXXv3l2rV69WUFCQr1oGAKBW+TSoe/fuLWNMhcsdDocSExOVmJhYe00BAGARaz+jBgAABDUAAFYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiDXzdALwvIyND2dnZXqmVnp7ulToAfM+br+fmzZsrIiLCa/VQMYL6HJORkaG2bdupoCDfq3WPFxZ5tR6A2lNwOEeSQ8OHD/daTX//AO3enU5Y1wKC+hyTnZ2tgoJ8db9rioLD2px1vYM7Nmrnirk6ceLE2TcHwCeO5+dJMuoy7GG1iGp71vVyD+7T5vlTlZ2dTVDXAoL6HBUc1kZNI2LOuk7uwX1n3wwAKzRuGeGV/y+gdnEyGQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBg/IVpF3rwylSQVFhbK6XR6rR5XuwKAcwtBXQU1cmUqh0Myxnv1/h+udgUA5waCugpq6spU3rqizck1udoVAJwbCOpq8PaVqbx5RRuudgUA5xZOJgMAwGIENQAAFuOtbwBAtXj7Wybe/haMt+s1b95cERERXqt3pghqAECVFBzOkeTQ8OHDvVvY29+C8XI9f/8A7d6dXuthTVADAKrkeH6eJFMj31jxVk1v18s9uE+b509VdnY2QQ0AqBtq4hsr3qpZE9+q8RVOJgMAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAi9WJoH7hhRcUFRUlPz8/XXnllfroo4983RIAALXC+qB+4403NH78eE2ePFnbtm1Tr169NGDAAGVkZPi6NQAAapz1QT1jxgzdfffduueee9SuXTvNnDlTrVu31pw5c3zdGgAANc7qnxAtKirSli1b9Mgjj3iMx8fHKzU1tdx1CgsLVVhY6L5/+PBhSVJubu5Z93PkyBFJ0i/79+hEYcFZ18s9uF+SdPiHr9WwgeOs69VETeqdPdt7PN/q1URN6p0923vMzfztXdwjR454JU8kKSgoSA7HGfRmLPbDDz8YSeaTTz7xGP/73/9uLr300nLXmTJlipHEjRs3bty4WX07fPjwGWWh1UfUpU79i8MYU+FfIZMmTdKECRPc90tKSvTLL7+oWbNm5a6Tm5ur1q1b68CBAwoODvZu45ZgG88NbOO54XzYRun82M6z3cagoKAzmmd1UDdv3lz169dXZmamx3hWVpZCQ0PLXcfpdJa5UPgFF1xw2scKDg4+Z59MpdjGcwPbeG44H7ZROj+2s6a30eqTyRo1aqQrr7xSKSkpHuMpKSmKjY31UVcAANQeq4+oJWnChAkaMWKEunbtqp49e2ru3LnKyMjQ6NGjfd0aAAA1zvqgvu2225STk6PHH39cBw8eVIcOHfTuu+8qMjLSK/WdTqemTJlS5u3ycwnbeG5gG88N58M2SufHdtbWNjqMMaZGHwEAAFSb1Z9RAwBwviOoAQCwGEENAIDFCGoAACx2Tgd1mzZt5HA4ytzGjh1b7vz169eXO3/37t213HnFPvzwQw0aNEjh4eFyOBxavny5x3JjjBITExUeHi5/f3/17t1bu3btOm3dt99+W+3bt5fT6VT79u21bNmyGtqC06tsG48fP66HH35YHTt2VGBgoMLDw3XnnXfqxx9/rLTmggULyt23x44dq+GtKd/p9uPIkSPL9NqjR4/T1q0r+1FSufvD4XDo6aefrrCmbftx2rRp6tatm4KCgtSyZUv9/ve/1549ezzm1PXX5Om28Vx4TZ7JfvTla/KcDuq0tDQdPHjQfSv94ZQ//OEPla63Z88ej/Wio6Nro90zcvToUXXu3FmzZs0qd/n06dM1Y8YMzZo1S2lpaXK5XOrfv7/y8vIqrLlx40bddtttGjFihD7//HONGDFCt956qzZv3lxTm1GpyrYxPz9fW7du1aOPPqqtW7dq6dKl+uqrr3TjjTeetm5wcLDHfj148KD8/PxqYhNO63T7UZKuu+46j17ffffdSmvWpf0oqcy+mD9/vhwOh26++eZK69q0Hzds2KCxY8dq06ZNSklJ0YkTJxQfH6+jR4+659T11+TptvFceE2eyX6UfPiaPJuLZtQ1DzzwgLn44otNSUlJucvXrVtnJJlDhw7VbmPVJMksW7bMfb+kpMS4XC7z5JNPuseOHTtmQkJCzIsvvlhhnVtvvdVcd911HmPXXnutGTp0qNd7rqpTt7E8n376qZFk9u/fX+Gc5ORkExIS4t3mvKS8bUxISDCDBw+uUp26vh8HDx5s+vbtW+kcm/ejMcZkZWUZSWbDhg3GmHPzNXnqNpanrr8my9tGX74mz+kj6pMVFRXptdde01133XXay4pdfvnlCgsLU79+/bRu3bpa6vDs7d27V5mZmYqPj3ePOZ1OxcXFVXhZUOm3v/pOXkeSrr322krXscnhw4flcDhO+5vuR44cUWRkpFq1aqWBAwdq27ZttdNgNa1fv14tW7bUpZdeqnvvvVdZWVmVzq/L+/Gnn37SypUrdffdd592rs37sfSyuk2bNpV0br4mT93GiubU5ddkRdvoq9fkeRPUy5cv16+//qqRI0dWOCcsLExz587V22+/raVLlyomJkb9+vXThx9+WHuNnoXSi5ecesGS0NDQMhc2OXW9qq5ji2PHjumRRx7RsGHDKv1R/LZt22rBggVasWKFXn/9dfn5+emqq67S119/XYvdnrkBAwboX//6l9auXatnnnlGaWlp6tu3r8e11k9Vl/fjwoULFRQUpCFDhlQ6z+b9aIzRhAkTdPXVV6tDhw6Szr3XZHnbeKq6/pqsaBt9+Zq0/idEvWXevHkaMGCAwsPDK5wTExOjmJgY9/2ePXvqwIED+sc//qHf/e53tdGmV1TlsqBns46vHT9+XEOHDlVJSYleeOGFSuf26NHD48SPq666SldccYWef/55PffcczXdapXddttt7v/u0KGDunbtqsjISK1cubLSMKuL+1GS5s+frzvuuOO0n0/avB/vu+8+ffHFF/r444/LLDtXXpOVbaN0brwmK9pGX74mz4sj6v3792vNmjW65557qrxujx49fP4X3plyuVySVKXLgpauV9V1fO348eO69dZbtXfvXqWkpFT5EnP16tVTt27d6sy+DQsLU2RkZKX91sX9KEkfffSR9uzZU63Xpy37cdy4cVqxYoXWrVunVq1aucfPpddkRdtY6lx4TZ5uG09Wm6/J8yKok5OT1bJlS91www1VXnfbtm0KCwurga68LyoqSi6Xy+OyoEVFRdqwYUOllwXt2bNnmUuJrl692tpLiZb+D+Hrr7/WmjVr1KxZsyrXMMZo+/btdWbf5uTk6MCBA5X2W9f2Y6l58+bpyiuvVOfOnau8rq/3ozFG9913n5YuXaq1a9cqKirKY/m58Jo83TZKdf81eSbbeKpafU1W6dSzOqi4uNhERESYhx9+uMyyRx55xIwYMcJ9/9lnnzXLli0zX331ldm5c6d55JFHjCTz9ttv12bLlcrLyzPbtm0z27ZtM5LMjBkzzLZt29xnVz755JMmJCTELF261OzYscPcfvvtJiwszOTm5rprjBgxwjzyyCPu+5988ompX7++efLJJ016erp58sknTYMGDcymTZtqffuMqXwbjx8/bm688UbTqlUrs337dnPw4EH3rbCw0F3j1G1MTEw0q1atMt9++63Ztm2b+eMf/2gaNGhgNm/e7ItNrHQb8/LyzF/+8heTmppq9u7da9atW2d69uxpLrzwwnNmP5Y6fPiwCQgIMHPmzCm3hu378c9//rMJCQkx69ev93gu5ufnu+fU9dfk6bbxXHhNnm4bff2aPOeD+v333zeSzJ49e8osS0hIMHFxce77Tz31lLn44ouNn5+fadKkibn66qvNypUra7Hb0yv9Ctmpt4SEBGPMb18HmTJlinG5XMbpdJrf/e53ZseOHR414uLi3PNLvfXWWyYmJsY0bNjQtG3b1qd/nFS2jXv37i13mSSzbt06d41Tt3H8+PEmIiLCNGrUyLRo0cLEx8eb1NTU2t+4/6eybczPzzfx8fGmRYsWpmHDhiYiIsIkJCSYjIwMjxp1eT+Weumll4y/v7/59ddfy61h+36s6LmYnJzsnlPXX5On28Zz4TV5um309WuSy1wCAGCx8+IzagAA6iqCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAFqwYMFpL0lYk/bt2yeHw6Ht27f7rAfAVufN1bMA2GHkyJH69ddftXz5cvdY69atdfDgQTVv3tx3jQGW4ogagFccP3682uvWr19fLpdLDRpw7ACciqAGLLFq1SpdffXVuuCCC9SsWTMNHDhQ3377rXv5999/r6FDh6pp06YKDAxU165dtXnzZvfyFStWqGvXrvLz81Pz5s09rpFbVFSkiRMn6sILL1RgYKC6d++u9evXV9rPf/7zH1155ZXy8/PTRRddpKlTp+rEiRPu5Q6HQy+++KIGDx6swMBAPfHEEyouLtbdd9+tqKgo+fv7KyYmRv/85z/d6yQmJmrhwoV655135HA45HA4tH79+nLf+t6wYYP+53/+R06nU2FhYXrkkUc8Hr937966//77NXHiRDVt2lQul0uJiYnV+JcH7Mafr4Aljh49qgkTJqhjx446evSoHnvsMd10003avn278vPzFRcXpwsvvFArVqyQy+XS1q1bVVJSIknui9dPnjxZr776qoqKirRy5Up37T/+8Y/at2+flixZovDwcC1btkzXXXedduzYoejo6DK9vP/++xo+fLiee+459erVS99++63+9Kc/SZKmTJninjdlyhRNmzZNzz77rOrXr6+SkhK1atVKb775ppo3b67U1FT96U9/UlhYmG699VY99NBDSk9PV25urpKTkyVJTZs21Y8//ujx+D/88IOuv/56jRw5UosWLdLu3bt17733ys/PzyOMFy5cqAkTJmjz5s3auHGjRo4cqauuukr9+/f32n4BfK561xoBUNOysrKMJLNjxw7z0ksvmaCgIJOTk1Pu3J49e5o77rij3GXffPONcTgc5ocffvAY79evn5k0aZIxxpjk5GQTEhLiXtarVy+TlJTkMf/VV181YWFh7vuSzPjx40+7HWPGjDE333yz+35CQoIZPHiwx5zSKzBt27bNGGPMX//6VxMTE2NKSkrcc2bPnm0aN25siouLjTG/Xano6quv9qjTrVu3ci9pC9RlHFEDlvj222/16KOPatOmTcrOznYfLWdkZGj79u26/PLL1bRp03LX3b59u+69995yl23dulXGGF166aUe44WFhWrWrFm562zZskVpaWn6+9//7h4rLi7WsWPHlJ+fr4CAAElS165dy6z74osv6pVXXtH+/ftVUFCgoqIidenS5bTbf7L09HT17NlTDofDPXbVVVfpyJEj+v777xURESFJ6tSpk8d6YWFhysrKqtJjAbYjqAFLDBo0SK1bt9bLL7+s8PBwlZSUqEOHDioqKpK/v3+l61a2vKSkRPXr19eWLVtUv359j2WNGzeucJ2pU6d6fM5dys/Pz/3fgYGBHsvefPNNPfjgg3rmmWfUs2dPBQUF6emnn/b4LP1MGGM8Qrp0TJLHeMOGDT3mOBwO9x84wLmCoAYskJOTo/T0dL300kvq1auXJOnjjz92L+/UqZNeeeUV/fLLL+UeVXfq1EkffPCB/vjHP5ZZdvnll6u4uFhZWVnu2qdzxRVXaM+ePbrkkkuqtB0fffSRYmNjNWbMGPfYySfESVKjRo1UXFxcaZ327dvr7bff9gjs1NRUBQUF6cILL6xST0Bdx1nfgAWaNGmiZs2aae7cufrmm2+0du1aTZgwwb389ttvl8vl0u9//3t98skn+u677/T2229r48aNkn47qev111/XlClTlJ6erh07dmj69OmSpEsvvVR33HGH7rzzTi1dulR79+5VWlqannrqKb377rvl9vPYY49p0aJFSkxM1K5du5Senq433nhDf/vb3yrdjksuuUSfffaZ3n//fX311Vd69NFHlZaW5jGnTZs2+uKLL7Rnzx5lZ2eX+7WuMWPG6MCBAxo3bpx2796td955R1OmTNGECRNUrx7/28L5hWc8YIF69eppyZIl2rJlizp06KAHH3xQTz/9tHt5o0aNtHr1arVs2VLXX3+9OnbsqCeffNL9Vnbv3r311ltvacWKFerSpYv69u3r8XZzcnKy7rzzTv3lL39RTEyMbrzxRm3evFmtW7cut59rr71W//3vf5WSkqJu3bqpR48emjFjhiIjIyvdjtGjR2vIkCG67bbb1L17d+Xk5HgcXUvSvffeq5iYGHXt2lUtWrTQJ598UqbOhRdeqHfffVeffvqpOnfurNGjR+vuu+8+7R8KwLnIYUo/+AEAANbhiBoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFvu/fr8wso8ekW0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.displot(x=df.acceleration)\n", + "plt.title('Distribution of Acceleration')\n", + "plt.show();" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "dd0e9f92-fe24-4de5-ba3c-e0cdb9767e0d", + "metadata": { + "execution": { + "iopub.execute_input": "2022-08-01T00:19:01.474821Z", + "iopub.status.busy": "2022-08-01T00:19:01.474614Z", + "iopub.status.idle": "2022-08-01T00:19:01.558118Z", + "shell.execute_reply": "2022-08-01T00:19:01.557560Z", + "shell.execute_reply.started": "2022-08-01T00:19:01.474806Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAHFCAYAAACXYgGUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAp3ElEQVR4nO3deXQUZaL+8aeTkJUQJBCzEAIqBJBFJKBsEy6MbIIi3otKhAQRjiA6go6iM0BwBRnwOuM44BWDjOC4sIgiCMoyamImyqoTQBxWgyJRCFsCSb+/P/yloXnT2UjoQL6fc/ocuurd+u3qqidV1bTDGGMEAABwDh9vDwAAANQ8BAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQE1Fjz58+Xw+FwezRq1Eg9e/bUBx984O3huTRt2lQpKSkVrnfy5EmlpqZq/fr1VT6mPXv26Oabb1aDBg3kcDj00EMPlVnnzJkzioyMlMPh0LvvvlvlY6qM9evXy+FwVMsclUdOTo5SU1O1efNma11qaqocDsfFHxRwkRAQUOOlpaUpIyND6enpeuWVV+Tr66tBgwbp/fff9/bQLsjJkyc1bdq0ajn4TZgwQZmZmXrttdeUkZGhCRMmlFnngw8+0I8//ihJmjdvXpWP6VKUk5OjadOmlRgQ7r33XmVkZFz8QQEXiZ+3BwCUpU2bNkpISHA979evn6644gq9+eabGjRokBdHVnN9/fXX6ty5swYPHlzuOvPmzZO/v78SExO1evVqHThwQI0bN66+QXrBqVOnFBgYWCV/+Tdu3Piymx/gXJxBwCUnMDBQ/v7+qlOnjtvyn3/+WePGjVNMTIz8/f111VVX6Q9/+IMKCgokSfn5+erQoYOuueYaHT161FXvhx9+UGRkpHr27KmioiJJUkpKiurWratvvvlGvXv3VkhIiBo1aqTx48fr5MmTZY5x3759uvvuuxUREaGAgAC1atVKs2bNktPplPTrJYBGjRpJkqZNm+a6hFLWpYqy2i0+Jb9r1y6tXLnS1e6ePXtKbTcnJ0erVq3SoEGD9Pvf/15Op1Pz588vseyiRYvUpUsX1a1bV3Xr1tV1111nnXFYtWqVevfurbCwMAUHB6tVq1Z67rnn3Mp8+eWXuuWWW9SgQQMFBgaqQ4cOevvtt0sdZ0XqFl+iWr16te655x41atRIwcHBKigo0K5duzRy5Eg1b95cwcHBiomJ0aBBg7Rt2zZX/fXr16tTp06SpJEjR7rmMjU1VVLJlxicTqeef/55tWzZUgEBAYqIiNCIESN04MABt3I9e/ZUmzZtlJWVpR49eig4OFhXXXWVpk+f7novAa8zQA2VlpZmJJkvvvjCnDlzxpw+fdrs37/fPPjgg8bHx8esWrXKVfbUqVOmXbt2JiQkxPzpT38yq1evNpMnTzZ+fn5mwIABrnI7d+40oaGhZsiQIcYYY4qKikyvXr1MRESEycnJcZVLTk42/v7+pkmTJuaZZ54xq1evNqmpqcbPz88MHDjQbZxxcXEmOTnZ9fzQoUMmJibGNGrUyMyZM8esWrXKjB8/3kgyY8eONcYYk5+fb1atWmUkmVGjRpmMjAyTkZFhdu3a5XE+ytPu0aNHTUZGhomMjDTdunVztZufn1/qXD/zzDNGklmxYoVxOp0mLi7ONGvWzDidTrdykydPNpLMkCFDzDvvvGNWr15tZs+ebSZPnuwq8+qrrxqHw2F69uxpFi1aZD7++GPz8ssvm3HjxrnKrF271vj7+5sePXqYt956y6xatcqkpKQYSSYtLc1Vbt26dUaSWbduXYXrFm8/MTExZsyYMWblypXm3XffNYWFhWbDhg3m4YcfNu+++67ZsGGDWbp0qRk8eLAJCgoy27dvd81lcRt//OMfXXO5f/9+Y4wxU6dONefvQseMGWMkmfHjx5tVq1aZOXPmmEaNGpnY2Fjz008/ucolJiaa8PBw07x5czNnzhyzZs0aM27cOCPJvP7666W+V8DFQkBAjVW8cz7/ERAQYF5++WW3snPmzDGSzNtvv+22fMaMGUaSWb16tWvZW2+9ZSSZ//3f/zVTpkwxPj4+buuN+TUgSDIvvvii2/LiA+lnn33mWnZ+QJg0aZKRZDIzM93qjh071jgcDrNjxw5jjDE//fSTkWSmTp1arvkob7vFY7r55pvL1a7T6TTXXHONiYmJMYWFhcaYswe/Tz75xFXuP//5j/H19TVJSUke2zp27JipV6+e6d69uxUuztWyZUvToUMHc+bMGbflAwcONFFRUaaoqMgYU3JAKG/d4u1nxIgRZc5BYWGhOX36tGnevLmZMGGCa3lWVpYVPIqdHxCys7ONJLcgZIwxmZmZRpJ54oknXMsSExNLfC9bt25t+vbtW+Z4gYuBSwyo8RYsWKCsrCxlZWVp5cqVSk5O1v3336+XXnrJVWbt2rUKCQnRf//3f7vVLT5l/8knn7iWDR06VGPHjtXvf/97Pf3003riiSd00003ldh3UlKS2/Nhw4ZJktatW+dxvGvXrlXr1q3VuXNnayzGGK1du7bsF30R292wYYN27dql5ORk+fr6Sjp7Sv21115zlVuzZo2Kiop0//33e2wrPT1deXl5GjdunMfr/Lt27dL27dtdc1tYWOh6DBgwQAcPHtSOHTuqrO7tt99utVNYWKhnn31WrVu3lr+/v/z8/OTv769vv/1W2dnZpcyWZ8XbxPmXiTp37qxWrVq5bYOSFBkZab2X7dq10969eyvVP1DVCAio8Vq1aqWEhAQlJCSoX79+mjt3rvr06aNHH31UR44ckSTl5ua6vqJ3roiICPn5+Sk3N9dt+T333KMzZ87Iz89PDz74YIn9+vn5KTw83G1ZZGSkqz9PcnNzFRUVZS2Pjo4us25pqqvd4vsHbrvtNh05ckRHjhxRWFiYunfvrsWLF7vm+KeffpKkUm/MK0+Z4m9KPPLII6pTp47bY9y4cZKkw4cPV1ndkuZs4sSJmjx5sgYPHqz3339fmZmZysrKUvv27XXq1CmPYy9N8fx7eo/Of3/O37YkKSAgoNL9A1WNbzHgktSuXTt99NFH2rlzpzp37qzw8HBlZmbKGOMWEg4dOqTCwkI1bNjQtezEiRMaPny4WrRooR9//FH33nuv3nvvPauPwsJC5ebmuu3If/jhB0kl79yLhYeH6+DBg9bynJwcSXIbS0VUR7tHjx7V4sWLJcl1Q975Fi1apHHjxrluqjxw4IBiY2NLLHtuGU+Kx/n4449ryJAhJZaJj4+vsrolncl44403NGLECD377LNuyw8fPqz69et7HHtpireJgwcPWgEpJyen0u874C2cQcAlqfh76cUHpN69e+v48eNatmyZW7kFCxa41he77777tG/fPi1ZskTz5s3T8uXL9cILL5TYz8KFC92eL1q0SNKvd6F70rt3b/373//Wxo0brbE4HA7913/9l6Rf/1qUVO6/GMvbbkUsWrRIp06d0lNPPaV169ZZj4YNG7ouM/Tp00e+vr7629/+5rG9rl27KiwsTHPmzJExpsQy8fHxat68ubZs2eI6M3T+IzQ0tMrrnsvhcLjmv9iKFSv0/fffuy2ryHvUq1cvSb+Gj3NlZWUpOzvbbRsELgWcQUCN9/XXX6uwsFDSr6dxlyxZojVr1ui2225Ts2bNJEkjRozQX//6VyUnJ2vPnj1q27atPvvsMz377LMaMGCAfvvb30qSXn31Vb3xxhtKS0vTtddeq2uvvVbjx4/XY489pm7durldE/b399esWbN0/PhxderUSenp6Xr66afVv39/de/e3eN4J0yYoAULFujmm2/Wk08+qbi4OK1YsUIvv/yyxo4dqxYtWkiSQkNDFRcXp/fee0+9e/dWgwYN1LBhQzVt2vSC2q2IefPm6YorrtAjjzyiwMBAa/2IESM0e/ZsbdmyRe3bt9cTTzyhp556SqdOndJdd92lsLAw/fvf/9bhw4c1bdo01a1bV7NmzdK9996r3/72txo9erSuvPJK7dq1S1u2bHHdNzJ37lz1799fffv2VUpKimJiYvTzzz8rOztbGzdu1DvvvONxzBdSt9jAgQM1f/58tWzZUu3atdNXX32lmTNnWn/5X3311QoKCtLChQvVqlUr1a1bV9HR0a7LOueKj4/XmDFj9Je//EU+Pj7q37+/9uzZo8mTJys2NrZc/1kVUKN49x5JwLOSvsUQFhZmrrvuOjN79mzrq3u5ubnmvvvuM1FRUcbPz8/ExcWZxx9/3FVu69atJigoyO0bB8b8+pXDjh07mqZNm5pffvnFGPPrtxhCQkLM1q1bTc+ePU1QUJBp0KCBGTt2rDl+/Lhb/fO/xWCMMXv37jXDhg0z4eHhpk6dOiY+Pt7MnDnTdYd9sY8//th06NDBBAQEGElWO+crb7vl+RbDli1bjCTz0EMPeSyzfft2I8k88MADrmULFiwwnTp1MoGBgaZu3bqmQ4cO1l3+H374oUlMTDQhISEmODjYtG7d2syYMcPqf+jQoSYiIsLUqVPHREZGml69epk5c+a4ypT0LYby1i3efrKysqzX9csvv5hRo0aZiIgIExwcbLp3724+/fRTk5iYaBITE93Kvvnmm6Zly5amTp06bt86KelrjkVFRWbGjBmmRYsWpk6dOqZhw4bm7rvvdn01slhiYqK59tprrXElJyebuLg4azngDQ5jPJwHBGqxlJQUvfvuuzp+/Li3hwIAXsE9CAAAwEJAAAAAFi4xAAAAC2cQAACAhYAAAAAsBAQAAGCp9H+U5HQ6lZOTo9DQUI8/ygIAAGoWY4yOHTum6Oho+fh4Pk9Q6YCQk5Pj8f9jBwAANdv+/ftL/WG1SgeE4v/vfP/+/apXr15lmwEAABdRXl6eYmNjy/zdkkoHhOLLCvXq1SMgAABwiSnr9gBuUgQAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADA4uftAQDeYoxRfn6+t4dRYcYYFRQUSJICAgLkcDi8PKKKCQwMvOTGDNRGBATUWvn5+erfv7+3h1HrrFy5UkFBQd4eBoAycIkBAABYOIMASDp+3V0yPpfIx6HojEK3/EOSdKz9nZJvHS8PqGwOZ6Hqbn7T28MAUAGXyB4RqF7Gx++SONBafOtcEuM23h4AgArjEgMAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAIuftwfgLcYY5efnS5ICAwPlcDi8PCIAqH3YF9dctfYMQn5+vvr376/+/fu7Nk4AwMXFvrjmqrUBAQAAeEZAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALDUuIKSnp+uOO+5Qenp6herNmzdPvXr10rx586ppZACAy5mn409lj0sX0m9191keNSog5Ofna/bs2frxxx81e/Zs5efnl6vekSNHtHDhQjmdTi1cuFBHjhyp3oECAC4rno4/lT0uXUi/1d1nedWogLBw4ULl5uZKknJzc7Vo0aJy1Zs8ebKcTqckyel0asqUKdU2RgDA5cfT8aeyx6UL6be6+ywvP6/0WoIDBw5o0aJFMsZIkowxWrRokfr06aPGjRt7rPfll19q27Ztbsu2bt2qL7/8UgkJCR7rFfcjyWvpDN7l9r6fsz2gGvB5gwfnbg/GS59DT8efdu3aVeq4dCH9Lly4UMaYauuzIsodEAoKClRQUOB6npeXV2WDMMboxRdf9Lj8+eefl8PhsNY7nU49+eSTJbb55JNPatmyZfLxKfkkybmv5bbbbqvkyHHZcBZK8vf2KC5fzkLXP/m8wZOCggIFBwdf1D49HX88HV/KOi5daL9FRUXV1mdFlfsSw3PPPaewsDDXIzY2tsoGsW/fPmVlZVkTU1RUpKysLO3bt6/EepmZmR6DSl5enjIzM6tsjACAy4+n44/T6VReXl6Fj0sX2m9JqqrPiir3GYTHH39cEydOdD3Py8urspDQpEkTderUSRs3bnSbLF9fX3Xs2FFNmjQpsd4NN9ygevXqlRgSwsLCdMMNN3jsMyAgwPXvpUuXKjAw8AJeAS5F+fn5Z/+a9akxV9suT+fML583nOvcz+G5++WLxdPxx8fHR3Xr1tWJEycqdFy60H5LUlV9VlS594oBAQHV9uY5HA797ne/U3JyconLPZ1S8fHx0ZQpU/TII49Y66ZOnerx8kJx28UCAwMVFBRUydHjsnART9vVSnzeUA4X8/T5uX2WdPzx8fHR1KlT9eijj5ZY/kLH6qlfX19fGWNcN95XZZ8VVWO+xdC4cWMNGzbMNQEOh0PDhg1TTExMqfUSEhLUtm1bt2Xt2rXT9ddfX21jBQBcPjwdfzp27Fip49KF9JuUlKSkpKRq67MiakxAkKSkpCSFh4dLkho2bKhhw4aVq95TTz3lOlvg4+Pj8cZFAABK4un4U9nj0oX0W919lleNCgiBgYGaOHGirrzySk2YMKHc1ynr16+vpKQk+fj4KCkpSfXr16/egQIALiuejj+VPS5dSL/V3Wd51bg7s7p27aquXbtWuN6oUaM0atSoahgRAKA28HT8qexx6UL6re4+y6NGnUEAAAA1AwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFj9vD8BbAgMDtXLlSte/AQAXH/vimqvWBgSHw6GgoCBvDwMAajX2xTUXlxgAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFj8vD0AoCZwOAtlvD2I8io6U/K/azCHs9DbQwBQQQQEQFLdzW96ewiVErrlH94eAoDLFJcYAACAhTMIqLUCAwO1cuVKbw+jwowxKigokCQFBATI4XB4eUQVExgY6O0hACgHAgJqLYfDoaCgIG8Po1KCg4O9PQQAlzkuMQAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAAALAQEAAFgICAAAwEJAAAAAFgICAACwEBAAAICFgAAAACwEBAAAYCEgAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgIWAAAAALAQEAABgISAAAACLX2UrGmMkSXl5eVU2GAAAUL2Kj9vFx3FPKh0Qjh07JkmKjY2tbBMAAMBLjh07prCwMI/rHaasCOGB0+lUTk6OQkND5XA4SiyTl5en2NhY7d+/X/Xq1atMN5cN5uIs5uIs5uIs5uIs5sId83FWVcyFMUbHjh1TdHS0fHw832lQ6TMIPj4+aty4cbnK1qtXr9a/qcWYi7OYi7OYi7OYi7OYC3fMx1kXOhelnTkoxk2KAADAQkAAAACWag0IAQEBmjp1qgICAqqzm0sCc3EWc3EWc3EWc3EWc+GO+TjrYs5FpW9SBAAAly8uMQAAAAsBAQAAWAgIAADAQkAAAACWSgeEpk2byuFwWI/777+/xPLr168vsfz27dsrPXhv+ec//6lBgwYpOjpaDodDy5Ytc1tvjFFqaqqio6MVFBSknj176ptvvimz3cWLF6t169YKCAhQ69attXTp0mp6BVWntLk4c+aMHnvsMbVt21YhISGKjo7WiBEjlJOTU2qb8+fPL3Fbyc/Pr+ZXc2HK2i5SUlKs13TjjTeW2e7ltl1IKvH9dTgcmjlzpsc2L9Xt4rnnnlOnTp0UGhqqiIgIDR48WDt27HArU1v2GWXNRW3aZ5Rnu/D2PqPSASErK0sHDx50PdasWSNJ+p//+Z9S6+3YscOtXvPmzSs7BK85ceKE2rdvr5deeqnE9c8//7xmz56tl156SVlZWYqMjNRNN93k+v2KkmRkZOiOO+7Q8OHDtWXLFg0fPlxDhw5VZmZmdb2MKlHaXJw8eVIbN27U5MmTtXHjRi1ZskQ7d+7ULbfcUma79erVc9tODh48qMDAwOp4CVWmrO1Ckvr16+f2mj788MNS27wctwtJ1nv72muvyeFw6Pbbby+13Utxu9iwYYPuv/9+ffHFF1qzZo0KCwvVp08fnThxwlWmtuwzypqL2rTPKM92IXl5n2GqyO9+9ztz9dVXG6fTWeL6devWGUnml19+qaouawRJZunSpa7nTqfTREZGmunTp7uW5efnm7CwMDNnzhyP7QwdOtT069fPbVnfvn3NnXfeWeVjri7nz0VJ/vWvfxlJZu/evR7LpKWlmbCwsKod3EVW0lwkJyebW2+9tULt1Jbt4tZbbzW9evUqtczlsF0YY8yhQ4eMJLNhwwZjTO3eZ5w/FyWpLfuMkubC2/uMKrkH4fTp03rjjTd0zz33ePzhpmIdOnRQVFSUevfurXXr1lVF9zXK7t279cMPP6hPnz6uZQEBAUpMTFR6errHehkZGW51JKlv376l1rkUHT16VA6HQ/Xr1y+13PHjxxUXF6fGjRtr4MCB2rRp08UZYDVbv369IiIi1KJFC40ePVqHDh0qtXxt2C5+/PFHrVixQqNGjSqz7OWwXRw9elSS1KBBA0m1e59x/lx4KlMb9hme5sKb+4wqCQjLli3TkSNHlJKS4rFMVFSUXnnlFS1evFhLlixRfHy8evfurX/+859VMYQa44cffpAkXXnllW7Lr7zyStc6T/UqWudSk5+fr0mTJmnYsGGl/shIy5YtNX/+fC1fvlxvvvmmAgMD1a1bN3377bcXcbRVr3///lq4cKHWrl2rWbNmKSsrS7169VJBQYHHOrVhu3j99dcVGhqqIUOGlFructgujDGaOHGiunfvrjZt2kiqvfuMkubifLVln+FpLry9z6j0rzmea968eerfv7+io6M9lomPj1d8fLzreZcuXbR//3796U9/0m9+85uqGEaNcv6ZFGNMmWdXKlPnUnHmzBndeeedcjqdevnll0ste+ONN7rdiNOtWzddf/31+stf/qI///nP1T3UanPHHXe4/t2mTRslJCQoLi5OK1asKPXgeDlvF5L02muvKSkpqczrxZfDdjF+/Hht3bpVn332mbWutu0zSpsLqXbtMzzNhbf3GRd8BmHv3r36+OOPde+991a47o033njJJLzyioyMlCQrrR06dMhKdefXq2idS8WZM2c0dOhQ7d69W2vWrKnwT5T6+PioU6dOl922EhUVpbi4uFJf1+W8XUjSp59+qh07dlRq/3GpbRcPPPCAli9frnXr1qlx48au5bVxn+FpLorVpn1GWXNxrou9z7jggJCWlqaIiAjdfPPNFa67adMmRUVFXegQapRmzZopMjLS9a0O6dd7NDZs2KCuXbt6rNelSxe3OpK0evXqUutcCoo/6N9++60+/vhjhYeHV7gNY4w2b9582W0rubm52r9/f6mv63LdLorNmzdPHTt2VPv27Stc91LZLowxGj9+vJYsWaK1a9eqWbNmbutr0z6jrLmQas8+ozxzcb6Lvs+o8G2N5ygqKjJNmjQxjz32mLVu0qRJZvjw4a7nL7zwglm6dKnZuXOn+frrr82kSZOMJLN48eILGYJXHDt2zGzatMls2rTJSDKzZ882mzZtct1lO336dBMWFmaWLFlitm3bZu666y4TFRVl8vLyXG0MHz7cTJo0yfX8888/N76+vmb69OkmOzvbTJ8+3fj5+Zkvvvjior++iihtLs6cOWNuueUW07hxY7N582Zz8OBB16OgoMDVxvlzkZqaalatWmW+++47s2nTJjNy5Ejj5+dnMjMzvfESy620uTh27Jh5+OGHTXp6utm9e7dZt26d6dKli4mJial120Wxo0ePmuDgYPO3v/2txDYul+1i7NixJiwszKxfv97tM3Dy5ElXmdqyzyhrLmrTPqOsuagJ+4wLCggfffSRkWR27NhhrUtOTjaJiYmu5zNmzDBXX321CQwMNFdccYXp3r27WbFixYV07zXFX9k8/5GcnGyM+fVrS1OnTjWRkZEmICDA/OY3vzHbtm1zayMxMdFVvtg777xj4uPjTZ06dUzLli0vifBU2lzs3r27xHWSzLp161xtnD8XDz30kGnSpInx9/c3jRo1Mn369DHp6ekX/8VVUGlzcfLkSdOnTx/TqFEjU6dOHdOkSROTnJxs9u3b59ZGbdguis2dO9cEBQWZI0eOlNjG5bJdePoMpKWlucrUln1GWXNRm/YZZc1FTdhn8HPPAADAwm8xAAAACwEBAABYCAgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBASglpk/f36ZP51bnfbs2SOHw6HNmzd7bQwAylYlv+YIACVJSUnRkSNHtGzZMtey2NhYHTx4UA0bNvTewACUiTMIACrszJkzla7r6+uryMhI+fnx9wlQkxEQAC9YtWqVunfvrvr16ys8PFwDBw7Ud99951p/4MAB3XnnnWrQoIFCQkKUkJCgzMxM1/rly5crISFBgYGBatiwodtvw58+fVqPPvqoYmJiFBISohtuuEHr168vdTzvv/++OnbsqMDAQF111VWaNm2aCgsLXesdDofmzJmjW2+9VSEhIXr66adVVFSkUaNGqVmzZgoKClJ8fLxefPFFV53U1FS9/vrreu+99+RwOORwOLR+/foSLzFs2LBBnTt3VkBAgKKiojRp0iS3/nv27KkHH3xQjz76qBo0aKDIyEilpqZWYuYBlBcRHvCCEydOaOLEiWrbtq1OnDihKVOm6LbbbtPmzZt18uRJJSYmKiYmRsuXL1dkZKQ2btwop9MpSVqxYoWGDBmiP/zhD/r73/+u06dPa8WKFa62R44cqT179ugf//iHoqOjtXTpUvXr10/btm1T8+bNrbF89NFHuvvuu/XnP/9ZPXr00HfffacxY8ZIkqZOneoqN3XqVD333HN64YUX5OvrK6fTqcaNG+vtt99Ww4YNlZ6erjFjxigqKkpDhw7VI488ouzsbOXl5SktLU2S1KBBA+Xk5Lj1//3332vAgAFKSUnRggULtH37do0ePVqBgYFuIeD111/XxIkTlZmZqYyMDKWkpKhbt2666aabqux9AXCOSv3EE4AqdejQISPJbNu2zcydO9eEhoaa3NzcEst26dLFJCUllbhu165dxuFwmO+//95tee/evc3jjz9ujDEmLS3NhIWFudb16NHDPPvss27l//73v5uoqCjXc0nmoYceKvN1jBs3ztx+++2u58nJyebWW291K1P8i32bNm0yxhjzxBNPmPj4eON0Ol1l/vrXv5q6deuaoqIiY8yvv1jXvXt3t3Y6depU4k/NA6ganEEAvOC7777T5MmT9cUXX+jw4cOuswP79u3T5s2b1aFDBzVo0KDEups3b9bo0aNLXLdx40YZY9SiRQu35QUFBQoPDy+xzldffaWsrCw988wzrmVFRUXKz8/XyZMnFRwcLElKSEiw6s6ZM0evvvqq9u7dq1OnTun06dO67rrrynz958rOzlaXLl3kcDhcy7p166bjx4/rwIEDatKkiSSpXbt2bvWioqJ06NChCvUFoPwICIAXDBo0SLGxsfq///s/RUdHy+l0qk2bNjp9+rSCgoJKrVvaeqfTKV9fX3311Vfy9fV1W1e3bl2PdaZNm+Z2H0OxwMBA179DQkLc1r399tuaMGGCZs2apS5duig0NFQzZ850u1eiPIwxbuGgeJkkt+V16tRxK+NwOFzBCkDVIyAAF1lubq6ys7M1d+5c9ejRQ5L02Wefuda3a9dOr776qn7++ecSzyK0a9dOn3zyiUaOHGmt69Chg4qKinTo0CFX22W5/vrrtWPHDl1zzTUVeh2ffvqpunbtqnHjxrmWnXujpST5+/urqKio1HZat26txYsXuwWF9PR0hYaGKiYmpkJjAlB1+BYDcJFdccUVCg8P1yuvvKJdu3Zp7dq1mjhxomv9XXfdpcjISA0ePFiff/65/vOf/2jx4sXKyMiQ9OvNgm+++aamTp2q7Oxsbdu2Tc8//7wkqUWLFkpKStKIESO0ZMkS7d69W1lZWZoxY4Y+/PDDEsczZcoULViwQKmpqfrmm2+UnZ2tt956S3/84x9LfR3XXHONvvzyS3300UfauXOnJk+erKysLLcyTZs21datW7Vjxw4dPny4xK9Hjhs3Tvv379cDDzyg7du367333tPUqVM1ceJE+fiwiwK8hU8fcJH5+PjoH//4h7766iu1adNGEyZM0MyZM13r/f39tXr1akVERGjAgAFq27atpk+f7rpk0LNnT73zzjtavny5rrvuOvXq1cvttH5aWppGjBihhx9+WPHx8brllluUmZmp2NjYEsfTt29fffDBB1qzZo06deqkG2+8UbNnz1ZcXFypr+O+++7TkCFDdMcdd+iGG25Qbm6u29kESRo9erTi4+OVkJCgRo0a6fPPP7faiYmJ0Ycffqh//etfat++ve677z6NGjWqzIACoHo5TPHFPgAAgP+PMwgAAMBCQAAAABYCAgAAsBAQAACAhYAAAAAsBAQAAGAhIAAAAAsBAQAAWAgIAADAQkAAAAAWAgIAALAQEAAAgOX/AQ3BR23OlnrCAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x=df.acceleration);\n", + "plt.title('Boxplot of Acceleration')\n", + "plt.show();" + ] + }, + { + "cell_type": "markdown", + "id": "1087d45a-dc2f-47f9-be25-f1f28669c2ad", + "metadata": {}, + "source": [ + "I'm not even sure what acceleration is supposed to be. I assume probably it's 0-60mph time in seconds.. While it's interesting I think it contributes nothing to calculating MPG and looks a bit less than ideal anyway. Everything is close to the same value and there are some outliers" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "291e8653-3d29-4fb5-8105-2fea779cc5ed", + "metadata": { + "execution": { + "iopub.execute_input": "2022-08-01T00:19:01.559014Z", + "iopub.status.busy": "2022-08-01T00:19:01.558801Z", + "iopub.status.idle": "2022-08-01T00:19:01.693534Z", + "shell.execute_reply": "2022-08-01T00:19:01.692969Z", + "shell.execute_reply.started": "2022-08-01T00:19:01.558999Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAH+CAYAAABTKk23AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5QklEQVR4nO3deVxVdf7H8fcV4QKy5MqibJmSaWplg1IGpWKaWtlubqWNjWaSU5rZJDYOpjMZM5mV80uyR5lNozZOi0luLVihjrkMmhUumUSYCQqBwvf3Rw/ueAUXCLhf9PV8PM4j7/d87zmfL5fOm7Pd4zDGGAEAACs18nQBAADg1AhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIaljh5ZdflsPhcE2+vr4KDQ3Vtddeq5kzZyovL6/Se1JSUuRwOKq1nqKiIqWkpGjt2rXVel9V64qOjtaAAQOqtZwzWbRokdLS0qqc53A4lJKSUqvrq22rVq1St27d1KRJEzkcDr311ltV9tu9e7frsz7VmO69915Xn9qUmJioxMTEGr03OjpaI0eOPOX8Tz/9VI0bN9bvf//7KuenpqbK4XBoxYoVNVo/zk8ENaySnp6u9evXKyMjQ88995y6du2qWbNmqUOHDvrggw/c+o4ePVrr16+v1vKLioo0ffr0agd1TdZVE6cL6vXr12v06NF1XkNNGWN0++23y9vbW8uXL9f69euVkJBw2vcEBgbq5ZdfVnl5uVv7kSNH9OabbyooKKguS6513bt31+TJk5WWlqaPP/7Ybd62bds0ffp0jRkzRtdff72HKkRDRFDDKp06dVL37t3Vs2dP3XLLLXrmmWe0ZcsWNWnSRIMHD9b333/v6tumTRt17969TuspKiqqt3WdSffu3dWmTRuP1nA63333nX788UfdfPPN6tWrl7p3766mTZue9j133HGH9uzZo1WrVrm1v/HGGyorK9OgQYPqsuQ6MW3aNF166aUaOXKk6/fn+PHjGjlypNq0aaO//OUv9VJHxbrR8BHUsF5kZKSefvppFRYW6sUXX3S1V3U4evXq1UpMTFTz5s3l5+enyMhI3XLLLSoqKtLu3bvVsmVLSdL06dNdh1UrDmVWLG/Tpk269dZb1bRpU7Vt2/aU66qwbNkyde7cWb6+vrrwwgv1t7/9zW1+xWH93bt3u7WvXbtWDofDtXefmJiod955R3v27HE7DVChqsPE27Zt04033qimTZvK19dXXbt21cKFC6tcz+uvv66pU6cqPDxcQUFB6t27t3bu3HnqH/wJPv74Y/Xq1UuBgYHy9/dXfHy83nnnHdf8lJQU1x8RkydPlsPhUHR09BmXGxsbq/j4eC1YsMCtfcGCBRo8eLCCg4Mrvae8vFyzZ8/WxRdfLKfTqVatWmn48OH69ttv3foZYzR79mxFRUXJ19dXl19+ud57770q6ygoKNDDDz+smJgY+fj4qHXr1kpOTtbRo0fPOIaT+fj46JVXXtG+ffs0efJkSdLMmTP1n//8Ry+//LICAgJUWlqqGTNmuMbQsmVL3XPPPfrhhx/clvXGG28oKSlJYWFh8vPzU4cOHfToo49WqmvkyJEKCAjQ1q1blZSUpMDAQPXq1avatcNOjT1dAHA2+vfvLy8vL3344Yen7LN7927dcMMN6tmzpxYsWKALLrhA+/fv14oVK1RaWqqwsDCtWLFC119/vUaNGuU6jFwR3hUGDx6sO++8U/fff/8ZN9SbN29WcnKyUlJSFBoaqtdee00TJkxQaWmpHn744WqNcd68efrtb3+rr7/+WsuWLTtj/507dyo+Pl6tWrXS3/72NzVv3lyvvvqqRo4cqe+//16TJk1y6//YY4/pqquu0v/93/+poKBAkydP1sCBA5WdnS0vL69TrmfdunXq06ePOnfurJdeeklOp1Pz5s3TwIED9frrr+uOO+7Q6NGj1aVLFw0ePFjjx4/XkCFD5HQ6z2rco0aN0rhx43To0CE1bdpUO3fuVGZmpmbMmKElS5ZU6v+73/1O8+fP1wMPPKABAwZo9+7d+sMf/qC1a9dq06ZNatGihaRf/hibPn26Ro0apVtvvVX79u3Tfffdp7KyMsXGxrqWV1RUpISEBH377bd67LHH1LlzZ23fvl1PPPGEtm7dqg8++KDa58k7d+6s6dOn67HHHtNFF12kP/7xj5o4caJ69uyp8vJy3Xjjjfroo480adIkxcfHa8+ePZo2bZoSExO1YcMG+fn5SZJ27dql/v37Kzk5WU2aNNGOHTs0a9Ysff7551q9erXbOktLSzVo0CCNGTNGjz76qI4fP16tmmExA1ggPT3dSDJZWVmn7BMSEmI6dOjgej1t2jRz4q/wP//5TyPJbN68+ZTL+OGHH4wkM23atErzKpb3xBNPnHLeiaKioozD4ai0vj59+pigoCBz9OhRt7Hl5OS49VuzZo2RZNasWeNqu+GGG0xUVFSVtZ9c95133mmcTqfZu3evW79+/foZf39/89NPP7mtp3///m79/vGPfxhJZv369VWur0L37t1Nq1atTGFhoavt+PHjplOnTqZNmzamvLzcGGNMTk6OkWT+/Oc/n3Z5J/ctLCw0AQEBZu7cucYYYx555BETExNjysvLzbhx49x+7tnZ2UaSGTt2rNvyPvvsMyPJPPbYY8YYYw4dOmR8fX3NzTff7Nbvk08+MZJMQkKCq23mzJmmUaNGlX73Kn6f3n33XVdbVFSUGTFixBnHZ8wvP6MePXoYSaZjx47m559/NsYY8/rrrxtJZsmSJW79s7KyjCQzb968KpdXXl5ujh07ZtatW2ckmS+++MI1b8SIEUaSWbBgwVnVhoaFQ99oMMwZHp3etWtX+fj46Le//a0WLlyob775pkbrueWWW866b8eOHdWlSxe3tiFDhqigoECbNm2q0frP1urVq9WrVy9FRES4tVecGz354reTz/d27txZkrRnz55TruPo0aP67LPPdOuttyogIMDV7uXlpWHDhunbb78968PnpxIQEKDbbrtNCxYs0PHjx/XKK6/onnvuqXIvds2aNZJU6crr3/zmN+rQoYPrXPf69ev1888/6+6773brFx8fr6ioKLe2t99+W506dVLXrl11/Phx19S3b1+3UxPV5eXlpWnTpkn65WhGxRGGt99+WxdccIEGDhzotr6uXbsqNDTUbX3ffPONhgwZotDQUHl5ecnb29t1gV52dnaldVbndxcNB0GNBuHo0aM6ePCgwsPDT9mnbdu2+uCDD9SqVSuNGzdObdu2Vdu2bfXXv/61WusKCws7676hoaGnbDt48GC11ltdBw8erLLWip/Ryetv3ry52+uK4CguLj7lOg4dOiRjTLXWUxOjRo3Spk2b9Kc//Uk//PDDKW+BqljXqeqpmF/x39N9PhW+//57bdmyRd7e3m5TYGCgjDHKz8+v8bgqfsY+Pj5u6/vpp5/k4+NTaZ25ubmu9R05ckQ9e/bUZ599phkzZmjt2rXKysrS0qVLJVX+3Pz9/RvcVfI4O5yjRoPwzjvvqKys7Iz3v/bs2VM9e/ZUWVmZNmzYoGeffVbJyckKCQnRnXfeeVbrqs75yNzc3FO2VQSjr6+vJKmkpMSt368JgIrlHzhwoFL7d999J0muc7W/RtOmTdWoUaM6X89VV12l2NhYPfnkk+rTp0+lowQVKn6mBw4cqHQF/HfffeeqpaLfqT6fEy90a9Gihfz8/Cpd0Hbi/NrUokULNW/e/JT3UgcGBkr65YjJd999p7Vr17rd5vbTTz9V+b7avt8c9mCPGtbbu3evHn74YQUHB2vMmDFn9R4vLy/FxcXpueeekyTXYeiz2Yusju3bt+uLL75wa1u0aJECAwN1+eWXS5IrFLZs2eLWb/ny5ZWW53Q6z7q2Xr16uTbmJ3rllVfk7+9fK7eTNWnSRHFxcVq6dKlbXeXl5Xr11VfVpk0btW/f/levR5Ief/xxDRw48JRfFiJJ1113nSTp1VdfdWvPyspSdna260rn7t27y9fXV6+99ppbv8zMzEqH+gcMGKCvv/5azZs3V7du3SpNZ3P1enUMGDBABw8eVFlZWZXrq7jQrSJ4T74o78Q7H3B+YI8aVtm2bZvrnF1eXp4++ugjpaeny8vLS8uWLat0hfaJXnjhBa1evVo33HCDIiMj9fPPP7v2knr37i3pl72VqKgo/etf/1KvXr3UrFkztWjRosYb4/DwcA0aNEgpKSkKCwvTq6++qoyMDM2aNUv+/v6SpCuvvFKxsbF6+OGHdfz4cTVt2lTLli2r9IUYknTppZdq6dKlev7553XFFVeoUaNG6tatW5XrnjZtmt5++21de+21euKJJ9SsWTO99tpreueddzR79uwqb22qiZkzZ6pPnz669tpr9fDDD8vHx0fz5s3Ttm3b9Prrr9fantzQoUM1dOjQ0/aJjY3Vb3/7Wz377LNq1KiR+vXr57rqOyIiQg899JCkX44EPPzww5oxY4ZGjx6t2267Tfv27XNdnX+i5ORkLVmyRNdcc40eeughde7cWeXl5dq7d69Wrlyp3//+94qLi6uVMUrSnXfeqddee039+/fXhAkT9Jvf/Ebe3t769ttvtWbNGt144426+eabFR8fr6ZNm+r+++/XtGnT5O3trddee63SH4Y4D3j4YjbAGPO/K6MrJh8fH9OqVSuTkJBgUlNTTV5eXqX3nHwl9vr1683NN99soqKijNPpNM2bNzcJCQlm+fLlbu/74IMPzGWXXWacTqeR5LqKt2J5P/zwwxnXZcwvVwDfcMMN5p///Kfp2LGj8fHxMdHR0WbOnDmV3v/ll1+apKQkExQUZFq2bGnGjx9v3nnnnUpXff/444/m1ltvNRdccIFxOBxu61QVV6tv3brVDBw40AQHBxsfHx/TpUsXk56e7tan4qrvN99806294srrk/tX5aOPPjLXXXedadKkifHz8zPdu3c3//73v6tcXnWv+j6dk6/6NsaYsrIyM2vWLNO+fXvj7e1tWrRoYYYOHWr27dvn1q+8vNzMnDnTREREGB8fH9O5c2fz73//2yQkJLhd9W2MMUeOHDGPP/64iY2NNT4+PiY4ONhceuml5qGHHjK5ubmuftW56tuYU//sjx07Zv7yl7+YLl26GF9fXxMQEGAuvvhiM2bMGLNr1y5Xv8zMTNOjRw/j7+9vWrZsaUaPHm02bdpU6XMbMWKEadKkyVnXhYbFYcwZLqUFAAAewzlqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWO+eD2hijgoKCMz7QAQAAG53zQV1YWKjg4GAVFhZ6uhQAAKrtnA9qAAAaMoIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIs19nQBABqWvXv3Kj8/39NlVNKiRQtFRkZ6ugyg1hHUAM7a3r17dfHFHVRcXOTpUirx8/PXjh3ZhDXOOQQ1gLOWn5+v4uIixd07TUFh0Z4ux6XgwG59tmC68vPzCWqccwhqANUWFBatZpGxni4DOC9wMRkAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIt5PKj379+voUOHqnnz5vL391fXrl21ceNG13xjjFJSUhQeHi4/Pz8lJiZq+/btHqwYAID649GgPnTokK666ip5e3vrvffe03//+189/fTTuuCCC1x9Zs+erTlz5mju3LnKyspSaGio+vTpo8LCQs8VDgBAPfHoF57MmjVLERERSk9Pd7VFR0e7/m2MUVpamqZOnarBgwdLkhYuXKiQkBAtWrRIY8aMqe+SAQCoVx4N6uXLl6tv37667bbbtG7dOrVu3Vpjx47VfffdJ0nKyclRbm6ukpKSXO9xOp1KSEhQZmZmlUFdUlKikpIS1+uCgoK6HwgAoNbY+uAXyTMPf/FoUH/zzTd6/vnnNXHiRD322GP6/PPP9eCDD8rpdGr48OHKzc2VJIWEhLi9LyQkRHv27KlymTNnztT06dPrvHYAQO2z+cEvkmce/uLRoC4vL1e3bt2UmpoqSbrsssu0fft2Pf/88xo+fLirn8PhcHufMaZSW4UpU6Zo4sSJrtcFBQWKiIiog+oBALXN1ge/SJ57+ItHgzosLEyXXHKJW1uHDh20ZMkSSVJoaKgkKTc3V2FhYa4+eXl5lfayKzidTjmdzjqqGABQH3jwy/949Krvq666Sjt37nRr+/LLLxUVFSVJiomJUWhoqDIyMlzzS0tLtW7dOsXHx9drrQAAeIJH96gfeughxcfHKzU1Vbfffrs+//xzzZ8/X/Pnz5f0yyHv5ORkpaamql27dmrXrp1SU1Pl7++vIUOGeLJ0AADqhUeD+sorr9SyZcs0ZcoUPfnkk4qJiVFaWpruvvtuV59JkyapuLhYY8eO1aFDhxQXF6eVK1cqMDDQg5UDAFA/PBrUkjRgwAANGDDglPMdDodSUlKUkpJSf0UBAGAJj3+FKAAAODWCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYh5/KEdDs3fvXuXn53u6jCq1aNFCkZGRni4DAFCLCOpq2Lt3ry6+uIOKi4s8XUqV/Pz8tWNHNmENAOcQgroa8vPzVVxcpLh7pykoLNrT5bgpOLBbny2Yrvz8fIIaAM4hBHUNBIVFq1lkrKfLAACcB7iYDAAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALObRoE5JSZHD4XCbQkNDXfONMUpJSVF4eLj8/PyUmJio7du3e7BiAADql8f3qDt27KgDBw64pq1bt7rmzZ49W3PmzNHcuXOVlZWl0NBQ9enTR4WFhR6sGACA+uPxoG7cuLFCQ0NdU8uWLSX9sjedlpamqVOnavDgwerUqZMWLlyooqIiLVq0yMNVAwBQPzwe1Lt27VJ4eLhiYmJ055136ptvvpEk5eTkKDc3V0lJSa6+TqdTCQkJyszMPOXySkpKVFBQ4DYBANBQeTSo4+Li9Morr+j999/X3//+d+Xm5io+Pl4HDx5Ubm6uJCkkJMTtPSEhIa55VZk5c6aCg4NdU0RERJ2OAQCAuuTRoO7Xr59uueUWXXrpperdu7feeecdSdLChQtdfRwOh9t7jDGV2k40ZcoUHT582DXt27evbooHAKAeePzQ94maNGmiSy+9VLt27XJd/X3y3nNeXl6lvewTOZ1OBQUFuU0AADRUVgV1SUmJsrOzFRYWppiYGIWGhiojI8M1v7S0VOvWrVN8fLwHqwQAoP409uTKH374YQ0cOFCRkZHKy8vTjBkzVFBQoBEjRsjhcCg5OVmpqalq166d2rVrp9TUVPn7+2vIkCGeLBsAgHrj0aD+9ttvdddddyk/P18tW7ZU9+7d9emnnyoqKkqSNGnSJBUXF2vs2LE6dOiQ4uLitHLlSgUGBnqybAAA6o1Hg3rx4sWnne9wOJSSkqKUlJT6KQgAAMtYdY4aAAC4I6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLWRPUM2fOlMPhUHJysqvNGKOUlBSFh4fLz89PiYmJ2r59u+eKBACgnlkR1FlZWZo/f746d+7s1j579mzNmTNHc+fOVVZWlkJDQ9WnTx8VFhZ6qFIAAOqXx4P6yJEjuvvuu/X3v/9dTZs2dbUbY5SWlqapU6dq8ODB6tSpkxYuXKiioiItWrTIgxUDAFB/Gnu6gHHjxumGG25Q7969NWPGDFd7Tk6OcnNzlZSU5GpzOp1KSEhQZmamxowZU+XySkpKVFJS4npdUFBQd8XjrOzdu1f5+fmeLqNKLVq0UGRkpKfLAIBT8mhQL168WJs2bVJWVlalebm5uZKkkJAQt/aQkBDt2bPnlMucOXOmpk+fXruFosb27t2riy/uoOLiIk+XUiU/P3/t2JFNWAOwlseCet++fZowYYJWrlwpX1/fU/ZzOBxur40xldpONGXKFE2cONH1uqCgQBEREb++YNRIfn6+iouLFHfvNAWFRXu6HDcFB3brswXTlZ+fT1ADsJbHgnrjxo3Ky8vTFVdc4WorKyvThx9+qLlz52rnzp2SftmzDgsLc/XJy8urtJd9IqfTKafTWXeFo0aCwqLVLDLW02UAQIPjsYvJevXqpa1bt2rz5s2uqVu3brr77ru1efNmXXjhhQoNDVVGRobrPaWlpVq3bp3i4+M9VTYAAPXKY3vUgYGB6tSpk1tbkyZN1Lx5c1d7cnKyUlNT1a5dO7Vr106pqany9/fXkCFDPFEyAAD1zuNXfZ/OpEmTVFxcrLFjx+rQoUOKi4vTypUrFRgY6OnSAACoF1YF9dq1a91eOxwOpaSkKCUlxSP1AADgaR7/whMAAHBqBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwWGNPFwAAtSU7O9vTJVTSokULRUZGeroMNGAENYAGr/jwQUkODR061NOlVOLn568dO7IJa9QYQQ2gwTtWVCjJqOuQyWoZc7Gny3EpOLBbny2Yrvz8fIIaNUZQAzhnBLSKVLPIWE+XAdQqLiYDAMBiNQrqCy+8UAcPHqzU/tNPP+nCCy/81UUBAIBf1Ciod+/erbKyskrtJSUl2r9//68uCgAA/KJa56iXL1/u+vf777+v4OBg1+uysjKtWrVK0dHRtVYcAADnu2oF9U033SRJcjgcGjFihNs8b29vRUdH6+mnn6614gAAON9VK6jLy8slSTExMcrKylKLFi3qpCgAAPCLGt2elZOTU9t1AACAKtT4PupVq1Zp1apVysvLc+1pV1iwYMGvLgwAANQwqKdPn64nn3xS3bp1U1hYmBwOR23XBQAAVMOgfuGFF/Tyyy9r2LBhtV0PAAA4QY3uoy4tLVV8fHxt1wIAAE5So6AePXq0Fi1aVNu1AACAk9To0PfPP/+s+fPn64MPPlDnzp3l7e3tNn/OnDm1UhwAAOe7GgX1li1b1LVrV0nStm3b3OZxYRkAALWnRkG9Zs2a2q4DAABUgcdcAgBgsRrtUV977bWnPcS9evXqGhcEAAD+p0ZBXXF+usKxY8e0efNmbdu2rdLDOgAAQM3VKKifeeaZKttTUlJ05MiRX1UQAAD4n1o9Rz106FC+5xsAgFpUq0G9fv16+fr61uYiAQA4r9Xo0PfgwYPdXhtjdODAAW3YsEF/+MMfaqUwAABQw6AODg52e92oUSPFxsbqySefVFJSUq0UBgAAahjU6enptV0HAACoQo2CusLGjRuVnZ0th8OhSy65RJdddllt1QUAAFTDoM7Ly9Odd96ptWvX6oILLpAxRocPH9a1116rxYsXq2XLlrVdJwAA56UaXfU9fvx4FRQUaPv27frxxx916NAhbdu2TQUFBXrwwQdru0YAAM5bNdqjXrFihT744AN16NDB1XbJJZfoueee42IyAABqUY32qMvLyys9g1qSvL29VV5e/quLAgAAv6hRUF933XWaMGGCvvvuO1fb/v379dBDD6lXr161VhwAAOe7GgX13LlzVVhYqOjoaLVt21YXXXSRYmJiVFhYqGeffba2awQA4LxVo3PUERER2rRpkzIyMrRjxw4ZY3TJJZeod+/etV0fAADntWrtUa9evVqXXHKJCgoKJEl9+vTR+PHj9eCDD+rKK69Ux44d9dFHH5318p5//nl17txZQUFBCgoKUo8ePfTee++55htjlJKSovDwcPn5+SkxMVHbt2+vTskAADRo1QrqtLQ03XfffQoKCqo0Lzg4WGPGjNGcOXPOenlt2rTRU089pQ0bNmjDhg267rrrdOONN7rCePbs2ZozZ47mzp2rrKwshYaGqk+fPiosLKxO2QAANFjVCuovvvhC119//SnnJyUlaePGjWe9vIEDB6p///5q37692rdvrz/96U8KCAjQp59+KmOM0tLSNHXqVA0ePFidOnXSwoULVVRUpEWLFlWnbAAAGqxqnaP+/vvvq7wty7Wwxo31ww8/1KiQsrIyvfnmmzp69Kh69OihnJwc5ebmut2X7XQ6lZCQoMzMTI0ZM6bK5ZSUlKikpMT1uuIwPdCQ7N27V/n5+Z4uo5Ls7GxPlwCcd6oV1K1bt9bWrVt10UUXVTl/y5YtCgsLq1YBW7duVY8ePfTzzz8rICBAy5Yt0yWXXKLMzExJUkhIiFv/kJAQ7dmz55TLmzlzpqZPn16tGgCb7N27Vxdf3EHFxUWeLuWUjpWUeroE4LxRraDu37+/nnjiCfXr10++vr5u84qLizVt2jQNGDCgWgXExsZq8+bN+umnn7RkyRKNGDFC69atc813OBxu/Y0xldpONGXKFE2cONH1uqCgQBEREdWqCfCk/Px8FRcXKe7eaQoKi/Z0OW4ObF2vbcvn6/jx454uBThvVCuoH3/8cS1dulTt27fXAw88oNjYWDkcDmVnZ+u5555TWVmZpk6dWq0CfHx8XHvo3bp1U1ZWlv76179q8uTJkqTc3Fy3vfS8vLxKe9kncjqdcjqd1aoBsFFQWLSaRcZ6ugw3BQd2e7oE4LxTraAOCQlRZmamfve732nKlCkyxkj6Za+3b9++mjdv3mlD9GwYY1RSUqKYmBiFhoYqIyPD9fjM0tJSrVu3TrNmzfpV6wAAoKGo9heeREVF6d1339WhQ4f01VdfyRijdu3aqWnTptVe+WOPPaZ+/fopIiJChYWFWrx4sdauXasVK1bI4XAoOTlZqampateundq1a6fU1FT5+/tryJAh1V4XAAANUY2+mUySmjZtqiuvvPJXrfz777/XsGHDdODAAQUHB6tz585asWKF+vTpI0maNGmSiouLNXbsWB06dEhxcXFauXKlAgMDf9V6AQBoKGoc1LXhpZdeOu18h8OhlJQUpaSk1E9BAFAHbL2trUWLFoqMjPR0GTgDjwY1AJzLig8flOTQ0KFDPV1Klfz8/LVjRzZhbTmCGgDqyLGiQklGXYdMVsuYiz1djpuCA7v12YLpys/PJ6gtR1ADQB0LaBVp3a12aDhq9DxqAABQPwhqAAAsxqHvc4xtV5faVg8Ad7b9P2pbPTYgqM8Rtl9dykMcALuwzWg4COpzhK1Xl/IQB8BObDMaDoL6HGPb1aU8xAGwG9sM+3ExGQAAFiOoAQCwGEENAIDFOEeN855tt4PYVg8AzyKocd7i9hQADQFBjfMWt6cAaAgIapz3uD0FgM24mAwAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFPBrUM2fO1JVXXqnAwEC1atVKN910k3bu3OnWxxijlJQUhYeHy8/PT4mJidq+fbuHKgYAoH55NKjXrVuncePG6dNPP1VGRoaOHz+upKQkHT161NVn9uzZmjNnjubOnausrCyFhoaqT58+Kiws9GDlAADUj8aeXPmKFSvcXqenp6tVq1bauHGjrrnmGhljlJaWpqlTp2rw4MGSpIULFyokJESLFi3SmDFjPFE2AAD1xqpz1IcPH5YkNWvWTJKUk5Oj3NxcJSUlufo4nU4lJCQoMzPTIzUCAFCfPLpHfSJjjCZOnKirr75anTp1kiTl5uZKkkJCQtz6hoSEaM+ePVUup6SkRCUlJa7XBQUFdVQxAAB1z5o96gceeEBbtmzR66+/Xmmew+Fwe22MqdRWYebMmQoODnZNERERdVIvAAD1wYqgHj9+vJYvX641a9aoTZs2rvbQ0FBJ/9uzrpCXl1dpL7vClClTdPjwYde0b9++uiscAIA65tGgNsbogQce0NKlS7V69WrFxMS4zY+JiVFoaKgyMjJcbaWlpVq3bp3i4+OrXKbT6VRQUJDbBABAQ+XRc9Tjxo3TokWL9K9//UuBgYGuPefg4GD5+fnJ4XAoOTlZqampateundq1a6fU1FT5+/tryJAhniwdAIB64dGgfv755yVJiYmJbu3p6ekaOXKkJGnSpEkqLi7W2LFjdejQIcXFxWnlypUKDAys52oBAKh/Hg1qY8wZ+zgcDqWkpCglJaXuCwIAwDJWXEwGAACqRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALCYR4P6ww8/1MCBAxUeHi6Hw6G33nrLbb4xRikpKQoPD5efn58SExO1fft2zxQLAIAHeDSojx49qi5dumju3LlVzp89e7bmzJmjuXPnKisrS6GhoerTp48KCwvruVIAADyjsSdX3q9fP/Xr16/KecYYpaWlaerUqRo8eLAkaeHChQoJCdGiRYs0ZsyY+iwVAACPsPYcdU5OjnJzc5WUlORqczqdSkhIUGZm5infV1JSooKCArcJAICGytqgzs3NlSSFhIS4tYeEhLjmVWXmzJkKDg52TREREXVaJwAAdcnaoK7gcDjcXhtjKrWdaMqUKTp8+LBr2rdvX12XCABAnfHoOerTCQ0NlfTLnnVYWJirPS8vr9Je9omcTqecTmed1wcAQH2wdo86JiZGoaGhysjIcLWVlpZq3bp1io+P92BlAADUH4/uUR85ckRfffWV63VOTo42b96sZs2aKTIyUsnJyUpNTVW7du3Url07paamyt/fX0OGDPFg1QAA1B+PBvWGDRt07bXXul5PnDhRkjRixAi9/PLLmjRpkoqLizV27FgdOnRIcXFxWrlypQIDAz1VMgAA9cqjQZ2YmChjzCnnOxwOpaSkKCUlpf6KAgDAItaeowYAAAQ1AABWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgsQYR1PPmzVNMTIx8fX11xRVX6KOPPvJ0SQAA1Avrg/qNN95QcnKypk6dqv/85z/q2bOn+vXrp71793q6NAAA6pz1QT1nzhyNGjVKo0ePVocOHZSWlqaIiAg9//zzni4NAIA6Z3VQl5aWauPGjUpKSnJrT0pKUmZmpoeqAgCg/jT2dAGnk5+fr7KyMoWEhLi1h4SEKDc3t8r3lJSUqKSkxPX68OHDkqSCgoJfXc+RI0ckST/u2anjJcW/enm1qeDAHknS4f275N3Y4eFq/sfWuiR7a7O1Lsne2qir+mytzda6JKkg95dTrkeOHKmVTJGkwMBAORxnGKex2P79+40kk5mZ6dY+Y8YMExsbW+V7pk2bZiQxMTExMTFZPx0+fPiMWWj1HnWLFi3k5eVVae85Ly+v0l52hSlTpmjixImu1+Xl5frxxx/VvHnzM//VcgYFBQWKiIjQvn37FBQU9KuW1RAx/vN7/BI/A8bP+Gt7/IGBgWfsY3VQ+/j46IorrlBGRoZuvvlmV3tGRoZuvPHGKt/jdDrldDrd2i644IJarSsoKOi8/CWtwPjP7/FL/AwYP+Ovz/FbHdSSNHHiRA0bNkzdunVTjx49NH/+fO3du1f333+/p0sDAKDOWR/Ud9xxhw4ePKgnn3xSBw4cUKdOnfTuu+8qKirK06UBAFDnrA9qSRo7dqzGjh3r6TLkdDo1bdq0SofWzxeM//wev8TPgPEzfk+M32GMMfW6RgAAcNas/sITAADOdwQ1AAAWI6gBALAYQQ0AgMUI6ipER0fL4XBUmsaNGydJMsYoJSVF4eHh8vPzU2JiorZv3+7hqmvP6cZ/7NgxTZ48WZdeeqmaNGmi8PBwDR8+XN99952ny641Z/r8TzRmzBg5HA6lpaXVf6F15GzGn52drUGDBik4OFiBgYHq3r37OfPo2TON/8iRI3rggQfUpk0b+fn5qUOHDufU0/yOHz+uxx9/XDExMfLz89OFF16oJ598UuXl5a4+5/I28Ezj98g28Fd/Ifc5KC8vzxw4cMA1ZWRkGElmzZo1xhhjnnrqKRMYGGiWLFlitm7dau644w4TFhZmCgoKPFt4LTnd+H/66SfTu3dv88Ybb5gdO3aY9evXm7i4OHPFFVd4uuxac6bPv8KyZctMly5dTHh4uHnmmWc8UmtdONP4v/rqK9OsWTPzyCOPmE2bNpmvv/7avP322+b777/3bOG15EzjHz16tGnbtq1Zs2aNycnJMS+++KLx8vIyb731lmcLryUzZswwzZs3N2+//bbJyckxb775pgkICDBpaWmuPufyNvBM4/fENpCgPgsTJkwwbdu2NeXl5aa8vNyEhoaap556yjX/559/NsHBweaFF17wYJV158TxV+Xzzz83ksyePXvqubL6UdX4v/32W9O6dWuzbds2ExUVdU4F9clOHv8dd9xhhg4d6uGq6s/J4+/YsaN58skn3fpcfvnl5vHHH/dEebXuhhtuMPfee69b2+DBg12f+bm+DTzT+KtS19tADn2fQWlpqV599VXde++9cjgcysnJUW5urtszsp1OpxISEs7JZ2SfPP6qHD58WA6Ho9a/U90GVY2/vLxcw4YN0yOPPKKOHTt6uMK6dfL4y8vL9c4776h9+/bq27evWrVqpbi4OL311lueLrVOVPX5X3311Vq+fLn2798vY4zWrFmjL7/8Un379vVwtbXj6quv1qpVq/Tll19Kkr744gt9/PHH6t+/vySd89vAM42/KnW+DayT+D+HvPHGG8bLy8vs37/fGGPMJ598YiS5Xle47777TFJSkidKrFMnj/9kxcXF5oorrjB33313PVdWP6oaf2pqqunTp49rD+tc3qM+efwHDhwwkoy/v7+ZM2eO+c9//mNmzpxpHA6HWbt2rYerrX1Vff4lJSVm+PDhRpJp3Lix8fHxMa+88ooHq6xd5eXl5tFHHzUOh8M0btzYOBwOk5qa6pp/rm8DzzT+k9XHNrBBfIWoJ7300kvq16+fwsPD3dpP3rs0xvzqx2ja6FTjl365qOLOO+9UeXm55s2b54Hq6t7J49+4caP++te/atOmTefk532yk8dfcUHNjTfeqIceekiS1LVrV2VmZuqFF15QQkKCx2qtC1X9/v/tb3/Tp59+quXLlysqKkoffvihxo4dq7CwMPXu3duD1daON954Q6+++qoWLVqkjh07avPmzUpOTlZ4eLhGjBjh6neubgPPdvxSPW4D6+xPgHPA7t27TaNGjdwuEvn666+NJLNp0ya3voMGDTLDhw+v7xLrVFXjr1BaWmpuuukm07lzZ5Ofn++B6upeVeN/5plnjMPhMF5eXq5JkmnUqJGJioryXLF1oKrxl5SUmMaNG5s//vGPbn0nTZpk4uPj67vEOlXV+IuKioy3t7d5++233fqOGjXK9O3bt75LrBNt2rQxc+fOdWv74x//aGJjY40x5/428Ezjr1Cf20DOUZ9Genq6WrVqpRtuuMHVFhMTo9DQUGVkZLjaSktLtW7dOsXHx3uizDpT1filX/6KvP3227Vr1y598MEHat68uYcqrFtVjX/YsGHasmWLNm/e7JrCw8P1yCOP6P333/dgtbWvqvH7+Pjoyiuv1M6dO936fvnll+fcE+2qGv+xY8d07NgxNWrkvun08vJyu32pISsqKjrt+M71beCZxi95YBtYp38GNGBlZWUmMjLSTJ48udK8p556ygQHB5ulS5earVu3mrvuuuucuTWhwqnGf+zYMTNo0CDTpk0bs3nzZrfbWEpKSjxUbe073ed/snPxHPXpxr906VLj7e1t5s+fb3bt2mWeffZZ4+XlZT766CMPVFo3Tjf+hIQE07FjR7NmzRrzzTffmPT0dOPr62vmzZvngUpr34gRI0zr1q1dtyctXbrUtGjRwkyaNMnV51zeBp5p/J7YBhLUp/D+++8bSWbnzp2V5pWXl5tp06aZ0NBQ43Q6zTXXXGO2bt3qgSrrzqnGn5OTYyRVOZ18n3FDdrrP/2TnYlCfafwvvfSSueiii4yvr6/p0qXLOXMPcYXTjf/AgQNm5MiRJjw83Pj6+prY2Fjz9NNPn/L2xYamoKDATJgwwURGRhpfX19z4YUXmqlTp7qF0Lm8DTzT+D2xDeQxlwAAWIxz1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaOE8lJiYqOTn5rPu//PLL5+SjTAHbEdQAAFiMoAZwzjh27JinSwBqHUENWCYxMVHjx49XcnKymjZtqpCQEM2fP19Hjx7VPffco8DAQLVt21bvvfee6z3r1q3Tb37zGzmdToWFhenRRx/V8ePHXfOPHj2q4cOHKyAgQGFhYXr66acrrbe0tFSTJk1S69at1aRJE8XFxWnt2rXVrn/37t1q1KiRNmzY4Nb+7LPPKioqShXfWvzf//5X/fv3V0BAgEJCQjRs2DDl5+e7+q9YsUJXX321LrjgAjVv3lwDBgzQ119/7bYeh8Ohf/zjH0pMTJSvr69effXVatcL2I6gBiy0cOFCtWjRQp9//rnGjx+v3/3ud7rtttsUHx+vTZs2qW/fvho2bJiKioq0f/9+9e/fX1deeaW++OILPf/883rppZc0Y8YM1/IeeeQRrVmzRsuWLdPKlSu1du1abdy40W2d99xzjz755BMtXrxYW7Zs0W233abrr79eu3btqlbt0dHR6t27t9LT093a09PTNXLkSDkcDh04cEAJCQnq2rWrNmzYoBUrVuj777/X7bff7up/9OhRTZw4UVlZWVq1apUaNWqkm2++udLjJCdPnqwHH3xQ2dnZ6tu3b7VqBRqEOnnUB4AaS0hIMFdffbXr9fHjx02TJk3MsGHDXG0HDhwwksz69evNY489ZmJjY92e3vTcc8+ZgIAAU1ZWZgoLC42Pj49ZvHixa/7BgweNn5+fmTBhgjHGmK+++so4HA6zf/9+t1p69eplpkyZYowxJj093QQHB5/VGN544w3TtGlT8/PPPxtjjNm8ebNxOBwmJyfHGGPMH/7wB5OUlOT2nn379p32iV15eXlGkuspTRVPMUpLSzurmoCGij1qwEKdO3d2/dvLy0vNmzfXpZde6moLCQmRJOXl5Sk7O1s9evSQw+Fwzb/qqqt05MgRffvtt/r6669VWlqqHj16uOY3a9ZMsbGxrtebNm2SMUbt27dXQECAa1q3bp3b4eazddNNN6lx48ZatmyZJGnBggW69tprFR0dLUnauHGj1qxZ47auiy++WJJc6/v66681ZMgQXXjhhQoKClJMTIwkae/evW7r6tatW7XrAxqSxp4uAEBl3t7ebq8dDodbW0Uol5eXyxjjFtKSXOeBHQ6H69+nU15eLi8vL23cuFFeXl5u8wICAqpdv4+Pj4YNG6b09HQNHjxYixYtUlpamtv6Bg4cqFmzZlV6b1hYmCRp4MCBioiI0N///neFh4ervLxcnTp1UmlpqVv/Jk2aVLs+oCEhqIEG7pJLLtGSJUvcAjszM1OBgYFq3bq1mjZtKm9vb3366aeKjIyUJB06dEhffvmlEhISJEmXXXaZysrKlJeXp549e9ZKXaNHj1anTp00b948HTt2TIMHD3bNu/zyy7VkyRJFR0ercePKm6GDBw8qOztbL774oquejz/+uFbqAhoaDn0DDdzYsWO1b98+jR8/Xjt27NC//vUvTZs2TRMnTlSjRo0UEBCgUaNG6ZFHHtGqVau0bds2jRw5Uo0a/e9///bt2+vuu+/W8OHDtXTpUuXk5CgrK0uzZs3Su+++W6O6OnTooO7du2vy5Mm666675Ofn55o3btw4/fjjj7rrrrv0+eef65tvvtHKlSt17733qqysTE2bNlXz5s01f/58ffXVV1q9erUmTpz4q39WQENEUAMNXOvWrfXuu+/q888/V5cuXXT//fdr1KhRevzxx119/vznP+uaa67RoEGD1Lt3b1199dW64oor3JaTnp6u4cOH6/e//71iY2M1aNAgffbZZ4qIiKhxbaNGjVJpaanuvfdet/bw8HB98sknKisrU9++fdWpUydNmDBBwcHBatSokRo1aqTFixdr48aN6tSpkx566CH9+c9/rnEdQEPmMGdzAgsAauBPf/qTFi9erK1bt3q6FKDBYo8aQK07cuSIsrKy9Oyzz+rBBx/0dDlAg8YeNYBq69ixo/bs2VPlvBdffFEZGRl6/fXXddNNN2nRokWVriQHcPYIagDVtmfPnlN+r3ZISIgCAwPruSLg3EVQAwBgMc5RAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACz2/0E4g7t0esaUAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.displot(x=df.model_year);\n", + "plt.title('Distribution of Model Year')\n", + "plt.show();" + ] + }, + { + "cell_type": "markdown", + "id": "f7addd67-2fba-4539-88e3-347164d3cfd7", + "metadata": {}, + "source": [ + "Model year interestingly has 3 peaks. I'm not going to use this as a feature, not because of this, but because the data only spans 12 years. Model year could be a great indicator of tech but it won't work in this case because there's just not enough data and no real leaps in technology were had in these years anyway. To make predictions on unseen data if the model year is outside 1970-1982 like in the training set then it'll throw the prediction wildly off" + ] + }, { "cell_type": "markdown", "id": "042416c1-0e56-4269-96c8-6926392e11e7", @@ -757,15 +1244,15 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 22, "id": "b3b42cca-6960-4d06-b7c4-1570f09e9fe0", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:37.355994Z", - "iopub.status.busy": "2022-07-21T20:29:37.355617Z", - "iopub.status.idle": "2022-07-21T20:29:37.364909Z", - "shell.execute_reply": "2022-07-21T20:29:37.364122Z", - "shell.execute_reply.started": "2022-07-21T20:29:37.355966Z" + "iopub.execute_input": "2022-08-01T00:19:01.695975Z", + "iopub.status.busy": "2022-08-01T00:19:01.695735Z", + "iopub.status.idle": "2022-08-01T00:19:01.701574Z", + "shell.execute_reply": "2022-08-01T00:19:01.700997Z", + "shell.execute_reply.started": "2022-08-01T00:19:01.695960Z" }, "tags": [] }, diff --git a/eda.ipynb b/eda.ipynb index bc717be..f0c4669 100644 --- a/eda.ipynb +++ b/eda.ipynb @@ -30,11 +30,11 @@ "id": "5ffa8b01-0b17-4ad8-8e85-f2656da50c9e", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:49.282341Z", - "iopub.status.busy": "2022-07-21T20:29:49.281981Z", - "iopub.status.idle": "2022-07-21T20:29:50.950452Z", - "shell.execute_reply": "2022-07-21T20:29:50.949681Z", - "shell.execute_reply.started": "2022-07-21T20:29:49.282260Z" + "iopub.execute_input": "2022-08-01T04:20:10.964571Z", + "iopub.status.busy": "2022-08-01T04:20:10.964037Z", + "iopub.status.idle": "2022-08-01T04:20:11.911635Z", + "shell.execute_reply": "2022-08-01T04:20:11.911048Z", + "shell.execute_reply.started": "2022-08-01T04:20:10.964486Z" }, "tags": [] }, @@ -76,6 +76,23 @@ " show_plots(filenames)" ] }, + { + "cell_type": "markdown", + "id": "416a9d7e-e2ad-41f0-a674-d13c01f41896", + "metadata": {}, + "source": [ + "## A bit on engines:\n", + "\n", + "* A most basic description of an engine is that it's an air pump\n", + "* Horsepower = (Torque * RPM) / 5252\n", + "* Torque peak is where an engine is operating most efficiently as far as air flow, applied science in action. (Fluid dynamics, resonance)\n", + "* Operating above or below the torque peak reduces efficiency and efficiency == fuel economy\n", + "* Torque peaks normally occur below 5252rpm, and horsepower peaks above that, so long as the engine can actually rev that high. On a dyno sheet (measuring torque and horsepower vs rpm) you'll see the torque/horsepower lines cross at 5252rpm\n", + "* As an engine spins faster, the power output increases until combustion is so inefficient and it produces so little torque that spinning faster produces no more power, if it holds together that long\n", + "\n", + "Basically an engine that makes lots of power at high rpm but relatively little low end torque (mazda rotary), is going to have poor fuel economy because it spends most of its time outside of its efficiency range. In contrast, diesel engines typically turn lower rpms and create all kinds of torque down low. So not only do they start off making more torque but they are less likely to stray very far from torque peak. This is also why horsepower numbers on a diesel appear low, because they can't rev as high. There's more to it but this should be enough to provide context" + ] + }, { "cell_type": "markdown", "id": "7af7dcdd-9618-4e81-88c8-d2c2cde0fdc2", @@ -90,11 +107,11 @@ "id": "3e633f5f-8a7f-4776-a855-f22fcb87e88d", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:50.952984Z", - "iopub.status.busy": "2022-07-21T20:29:50.952406Z", - "iopub.status.idle": "2022-07-21T20:29:50.967175Z", - "shell.execute_reply": "2022-07-21T20:29:50.966460Z", - "shell.execute_reply.started": "2022-07-21T20:29:50.952957Z" + "iopub.execute_input": "2022-08-01T04:20:11.913047Z", + "iopub.status.busy": "2022-08-01T04:20:11.912844Z", + "iopub.status.idle": "2022-08-01T04:20:11.923117Z", + "shell.execute_reply": "2022-08-01T04:20:11.922526Z", + "shell.execute_reply.started": "2022-08-01T04:20:11.913032Z" }, "tags": [] }, @@ -134,7 +151,7 @@ "id": "b0f65dd4-16b6-4222-8758-71e2ecac473e", "metadata": {}, "source": [ - "As the number of cylinders, displacement, horsepower, or weight increase, MPG goes down." + "As the number of cylinders, displacement, horsepower, or weight increase, MPG goes down. There are some outliers, we'll get to that in a minute" ] }, { @@ -142,7 +159,7 @@ "id": "61b1b79e-46c2-4e7b-b565-84d1e2045777", "metadata": {}, "source": [ - "I want to know more:" + "There are some other things I'd like to see:" ] }, { @@ -151,11 +168,11 @@ "id": "7342da99-d04a-4f4f-ad3c-06840144ec48", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:50.969118Z", - "iopub.status.busy": "2022-07-21T20:29:50.968685Z", - "iopub.status.idle": "2022-07-21T20:29:50.977202Z", - "shell.execute_reply": "2022-07-21T20:29:50.976474Z", - "shell.execute_reply.started": "2022-07-21T20:29:50.969090Z" + "iopub.execute_input": "2022-08-01T04:20:11.924056Z", + "iopub.status.busy": "2022-08-01T04:20:11.923876Z", + "iopub.status.idle": "2022-08-01T04:20:11.935974Z", + "shell.execute_reply": "2022-08-01T04:20:11.935279Z", + "shell.execute_reply.started": "2022-08-01T04:20:11.924034Z" }, "tags": [] }, @@ -165,90 +182,21 @@ "new_features['efficiency'] = df.horsepower / df.displacement\n", "new_features['load'] = df.displacement / df.weight\n", "new_features['bore_size'] = df.displacement / df.cylinders\n", - "new_features['grunt'] = new_features.bore_size / new_features.efficiency" + "new_features['grunt'] = new_features.bore_size * new_features.efficiency * df.horsepower\n", + "# new_features['grunt'] = (df.horsepower / new_features.bore_size) * new_features.efficiency" ] }, { "cell_type": "code", "execution_count": 4, - "id": "89cea145-4b6e-457b-9970-578144c1c364", - "metadata": { - "execution": { - "iopub.execute_input": "2022-07-21T20:29:50.979078Z", - "iopub.status.busy": "2022-07-21T20:29:50.978361Z", - "iopub.status.idle": "2022-07-21T20:29:50.984305Z", - "shell.execute_reply": "2022-07-21T20:29:50.983414Z", - "shell.execute_reply.started": "2022-07-21T20:29:50.979043Z" - }, - "tags": [] - }, - "outputs": [], - "source": [ - "merged = df.join(new_features)\n", - "del df" - ] - }, - { - "cell_type": "markdown", - "id": "0213061d-29c8-4f47-9128-705253bc6320", - "metadata": {}, - "source": [ - "Check Correlation" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "7205bdab-a7df-41b4-9ec0-c1c9e2fe1c03", - "metadata": { - "execution": { - "iopub.execute_input": "2022-07-21T20:29:50.985966Z", - "iopub.status.busy": "2022-07-21T20:29:50.985567Z", - "iopub.status.idle": "2022-07-21T20:29:50.999141Z", - "shell.execute_reply": "2022-07-21T20:29:50.998300Z", - "shell.execute_reply.started": "2022-07-21T20:29:50.985938Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "text/plain": [ - "weight -0.831745\n", - "displacement -0.804456\n", - "horsepower -0.777897\n", - "cylinders -0.776090\n", - "bore_size -0.773403\n", - "load -0.714996\n", - "grunt -0.712074\n", - "acceleration 0.420414\n", - "efficiency 0.509309\n", - "origin 0.563833\n", - "model_year 0.580091\n", - "mpg 1.000000\n", - "dtype: float64" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "merged.corrwith(y).sort_values()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, "id": "9fa0bf3e-d45b-4698-afac-e549db0de148", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:51.000637Z", - "iopub.status.busy": "2022-07-21T20:29:51.000343Z", - "iopub.status.idle": "2022-07-21T20:29:51.008598Z", - "shell.execute_reply": "2022-07-21T20:29:51.007461Z", - "shell.execute_reply.started": "2022-07-21T20:29:51.000610Z" + "iopub.execute_input": "2022-08-01T04:20:11.936853Z", + "iopub.status.busy": "2022-08-01T04:20:11.936679Z", + "iopub.status.idle": "2022-08-01T04:20:12.329795Z", + "shell.execute_reply": "2022-08-01T04:20:12.329065Z", + "shell.execute_reply.started": "2022-08-01T04:20:11.936838Z" }, "tags": [] }, @@ -279,8 +227,7 @@ } ], "source": [ - "make_plots(new_features,y)\n", - "del new_features" + "make_plots(new_features,y)" ] }, { @@ -288,73 +235,39 @@ "id": "5cbe16d7-24ef-4ceb-acd1-0dcecfdc96c2", "metadata": {}, "source": [ - "* HP per cubic inch is a measure of engine efficiency, as this increases so does MPG\n", - "* Load is a metric of how hard the engine has to work compared to its size. Engines that work hard use more fuel and a small engine working really hard can use more fuel than a big engine not doing much\n", + "* Efficiency (HP per cubic inch) is a rough measure of engine tech/efficiency, as this increases so does MPG\n", + "* Load is a metric of how hard the engine has to work compared to its size. Engines that work hard use more fuel and a small engine working really hard can use more fuel than a big engine that's not doing much\n", "* Bore_size is an attempt to describe cylinder bore diameter which gives insight on torque curve\n", "* Grunt is an attempt to describe the power curve of an engine, or more specifically the presence/absence of low rpm torque output" ] }, { "cell_type": "markdown", - "id": "416a9d7e-e2ad-41f0-a674-d13c01f41896", + "id": "dd05abcd-9ac9-4821-b575-ffbf8544db3c", "metadata": {}, "source": [ - "## A bit on engines:\n", - "\n", - "* A most basic description of an engine is that it's an air pump\n", - "* Horsepower = (Torque * RPM) / 5252\n", - "* Torque peak is where an engine is operating most efficiently as far as air flow, applied science in action. (Fluid dynamics, resonance)\n", - "* Operating above or below the torque peak reduces efficiency and efficiency == fuel economy\n", - "* Torque peaks normally occur below 5252rpm, and horsepower peaks above that, so long as the engine can actually rev that high. On a dyno sheet (measuring torque and horsepower vs rpm) you'll see the torque/horsepower lines cross at 5252rpm\n", - "* As an engine spins faster, the power output increases until combustion is so inefficient and it produces so little torque that spinning faster produces no more power, if it holds together that long\n", - "\n", - "Basically an engine that makes lots of power at high rpm but relatively little low end torque (mazda rotary), is going to have poor fuel economy because it spends most of its time outside of its efficiency range. In contrast, diesel engines typically turn lower rpms and create all kinds of torque down low. So not only do they start off making more torque but they are less likely to stray very far from torque peak. This is also why horsepower numbers on a diesel appear low, because they can't rev as high. There's more to it than this but this should be enough to provide context." - ] - }, - { - "cell_type": "markdown", - "id": "15d0d27b-5f92-4648-ad5c-35cc811430b3", - "metadata": {}, - "source": [ - "## Some stats" + "Merge new with the old" ] }, { "cell_type": "code", - "execution_count": 7, - "id": "8710cba8-6b7e-4219-98b9-b7d5a1b4f4b9", + "execution_count": 5, + "id": "89cea145-4b6e-457b-9970-578144c1c364", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:51.012153Z", - "iopub.status.busy": "2022-07-21T20:29:51.011763Z", - "iopub.status.idle": "2022-07-21T20:29:51.019164Z", - "shell.execute_reply": "2022-07-21T20:29:51.018305Z", - "shell.execute_reply.started": "2022-07-21T20:29:51.012124Z" + "iopub.execute_input": "2022-08-01T04:20:12.331981Z", + "iopub.status.busy": "2022-08-01T04:20:12.331135Z", + "iopub.status.idle": "2022-08-01T04:20:12.338040Z", + "shell.execute_reply": "2022-08-01T04:20:12.337017Z", + "shell.execute_reply.started": "2022-08-01T04:20:12.331935Z" }, "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Mean MPG: 23.51\n", - "Mean Weight: 2970.59\n", - "Mean Horsepower: 104.12\n", - "efficiency mean: 0.61\n", - "load mean: 0.06\n", - "bore_size mean: 33.36\n", - "grunt mean: 62.78\n" - ] - } - ], + "outputs": [], "source": [ - "print(f'''Mean MPG: {y.mean():.2f}\n", - "Mean Weight: {merged.weight.mean():.2f}\n", - "Mean Horsepower: {merged.horsepower.mean():.2f}''')\n", - "\n", - "for col in merged.columns[9:]:\n", - " print(f'{col} mean: {merged[col].mean():.2f}')" + "merged = df.join(new_features)\n", + "del new_features\n", + "del df" ] }, { @@ -362,20 +275,29 @@ "id": "d39b59e4-e596-4fc9-b886-1e6d314f597e", "metadata": {}, "source": [ - "### What's all that on the edges?" + "# What's all that on the edges?\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "fe7ee071-8aa4-4a8d-9e8e-480f3b9da9da", + "metadata": {}, + "source": [ + "## Rotaries" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 6, "id": "dbbfdab6-1cca-4329-a2ae-9258678ab0b1", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:51.020574Z", - "iopub.status.busy": "2022-07-21T20:29:51.020285Z", - "iopub.status.idle": "2022-07-21T20:29:51.043208Z", - "shell.execute_reply": "2022-07-21T20:29:51.042372Z", - "shell.execute_reply.started": "2022-07-21T20:29:51.020547Z" + "iopub.execute_input": "2022-08-01T04:20:12.339782Z", + "iopub.status.busy": "2022-08-01T04:20:12.339317Z", + "iopub.status.idle": "2022-08-01T04:20:12.367167Z", + "shell.execute_reply": "2022-08-01T04:20:12.365967Z", + "shell.execute_reply.started": "2022-08-01T04:20:12.339751Z" }, "tags": [] }, @@ -431,7 +353,7 @@ " 1.385714\n", " 0.030043\n", " 23.333333\n", - " 16.838488\n", + " 3136.333333\n", " \n", " \n", " 111\n", @@ -447,7 +369,7 @@ " 1.285714\n", " 0.032957\n", " 23.333333\n", - " 18.148148\n", + " 2700.000000\n", " \n", " \n", " 243\n", @@ -463,7 +385,7 @@ " 1.375000\n", " 0.029412\n", " 26.666667\n", - " 19.393939\n", + " 4033.333333\n", " \n", " \n", " 334\n", @@ -479,7 +401,7 @@ " 1.428571\n", " 0.028926\n", " 23.333333\n", - " 16.333333\n", + " 3333.333333\n", " \n", " \n", "\n", @@ -498,20 +420,21 @@ "243 77 3 mazda rx-4 1.375000 0.029412 26.666667 \n", "334 80 3 mazda rx-7 gs 1.428571 0.028926 23.333333 \n", "\n", - " grunt \n", - "71 16.838488 \n", - "111 18.148148 \n", - "243 19.393939 \n", - "334 16.333333 " + " grunt \n", + "71 3136.333333 \n", + "111 2700.000000 \n", + "243 4033.333333 \n", + "334 3333.333333 " ] }, - "execution_count": 8, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "merged[merged.efficiency>1]" + "wankels = merged[merged.efficiency>1]\n", + "wankels" ] }, { @@ -521,20 +444,98 @@ "source": [ "These are the Mazda rotaries, otherwise known as [Wankel Engines](https://en.wikipedia.org/wiki/Wankel_engine)\n", "\n", - "Efficient power for their size because they can rev to 7000rpm or so, and that's where they make peak power. Not good for fuel economy. Note the low gruntiness" + "Efficient power for their size because they can rev to 7000rpm or so, and that's where they make peak power" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "5eda8f40-bff6-4715-ba54-b083c74b039d", + "metadata": { + "execution": { + "iopub.execute_input": "2022-08-01T04:20:12.371148Z", + "iopub.status.busy": "2022-08-01T04:20:12.370520Z", + "iopub.status.idle": "2022-08-01T04:20:12.488456Z", + "shell.execute_reply": "2022-08-01T04:20:12.488016Z", + "shell.execute_reply.started": "2022-08-01T04:20:12.371118Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAELCAYAAADTK53JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgi0lEQVR4nO3de7xmc93/8dfew6BmHNpGcu6m+ZQYx0kqiSipkEhOQ6QopHT7yR1NSiRKisgppxluyohG7twRisgxp7fzmWw7hxnhzuz9++P7vVhzufa+rr332qc17+fjsR97X+v6ru/6XN+11md913eta+22np4ezMysetpHOgAzMxsaTvBmZhXlBG9mVlFO8GZmFeUEb2ZWUU7wZmYVtdBIB7Cgi4hfAY9L+vZIxzKSIuIzwPHAUsBGwL+A84DVgP8CVgeekPS9JvVcBpwn6cyhjbh1EXEk8A9Jx5VU38PAFyVd0eC9X5G3p4jYCDhVUpSx3LrlzAWmSHqw7LpHu4i4AfiCpDtHOpZmnODr5J1nOWA5Sc8Wpt8KrAW8U9LDIxJcnRzr24F5wFzg98C+kua2OG/DJDEUcuLZCfi/wuQHJK2V/z6GFPvFufxpwFWS1unPciR9ooRwSxMRk4BppAPVsJJ0DVB6cs91TxiKeseIY4DDgc+OdCDNeIimsYeAHWsvImJNYLGRC6dPn84729rAOsC3hmOhETFuALMdLWlC4WetwnsrA3f28Xqs2h2YLenlRm9GhDtZJRuGNv0tsElEvGOIlzNo3rgaO5vU6/pZfr0bcBbw/VqBiPhkfr0q8AJwmqTp+b2fk3bsmkWB70uaHhHrAKcB7wJmAz2FOpfKy96AtG7+DOwt6fFmAUt6OiIuJyX6Wn1bAUcCywO3AvtIujsizgZWAi6JiHnA4ZKOjogLSMMjiwG35fJ35rp+BbxMSrwbA9Mj4pvA8pJey2U+Cxwq6fUYmomIRYAuYBxwW0Q8DTySl/GhiDgOWBc4hMJQVkRsDXwX+A+gE/iqpN9HxFXAOZJOzeX2AP4TWBa4AfiSpEfyez3APsCBwNLADNJZRE9+fy/gG8AKwGPALsBHgfdLer33FhE/A+ZJOqDBR/wEcHqh7EeAc0jb1teBP0TEbsBBwF7AksD/ktb7P/M8u5K2tQnAj/vRth/JbbFCfv0w8HPStr0y6YxvN0mv5Pc/lZezCnBXjuH2XuruAd4l6f6I2JLUq10ReBH4iaRjGsyzKnAK6Uy4B7ictN6ej4iDgfUlbVco/1OgTdL+EbFE/uxbAt3AGcB3JM2LiN1z291A2ldPjIgzeltWrntd0n64Wm6HbuC+wvbVa1tIeiUibgI+BoyaocBG3INv7Hpg8Yh4T+6p7kDaKYteIu0oSwKfBPaJiG0AJO1b66UCHwKeAy6OiPHALFISfxtwAfOf5rWTNtyVSQn4ZdIO2VRErEBKJvfn15OBmcABwCTSweSSiBgvaVfgUXLvX9LRuZrLSAeeZYCbgXPrFrMTcAQwkZSguoDNC+/vkj9byyS9WjjdX0vSqpI2Ba4hJdsJku6t+6zvIx1w/5PU/h8GHq6vO6+PQ4BtcxtcQ2qTok8BU0mJ4HPAx/O82wPTSet4cWCr/HnPAbaIiCVzuYVI20dvn3tNQHXTliWt/5WBLwH7A9uQDmrLkbaXE3L9qwO/AHbN73WQDjgD9TlgC+CdwBRyRyQnvNOBL+dlnAz8Nh+AmzkN+LKkicAawB97KddG6nAsB7yHdECYnt+bCWwZEYvneMblWGfk988EXiMl5HVIyfWLhbo3AB4kbbtH9LWsvB9eBPyKtB5mAp+pVdRiW9xN2mZGNffge1frxf8JuAd4ovimpKsKL2+PiJmkHXRWbWIef50F7Cfploj4MLAwcFzuJV4YEd8o1NkF/Low/xHAlU3inJV7UxNIO9Z38vQdgN9J+kOu6xjga8AHgKsa1IOkYk9zOvBcRCwh6YU8+WJJf85/vxIRZ5KS+mUR8TZScvxKH7F+MyL2Lby+WNJuTT5fI3sCp9c+G3XrpuDLwJGS7gaIiB8Ah0TEyrVePHBU7tU9HxFXks6Afk9KHkdLujGXu79WaURcDWxP6iFuATwr6aZeYlgSmFM3rZvU+3w11/dl0sHs8fx6OvBo7rlvB1wq6er83qHAvgzc8ZKezHVdwhtnfHsBJ0v6a359ZkQcAryftA/05d/A6hFxm6TnSAeoN5F0P2+0Y2dE/Ji8vUp6JCJuJh3ozgI2Bf4l6fqIeDup87JkHup6KSJ+Qjo4npzre1JS7Yz7tbychsvKn2mh3BY9wG/yhdOaVtpiDuAhmjHsbOBqUk/nrPo3I2ID4ChSj2U8sAipR157f2HgQmCGpPPy5OVId4IUn/D2SGGetwA/ISWNpfLkiRExTtK8XuLcRtIVEbExqbezNPB8XtbrdUvqjojHSMM1b5J7TEeQEtckUhIi11dL8I/VzXYOcHdETCD1tq6R9FQvcQIcU9LdQiuSzkiaWRn4aUQcW5jWRmqDWts8XXjvX6QDZW0ZD/RS75mkoZ1TaH7W8hzpjKeoszYsUojzoojoLkybR7qAvhyFdpf0UkR09bG8Zuo/73KFGHaLiP0K748vvN+XzwLfBo6KiNuBgyVdV18oIpYh3Sm1EalN2pn/YDCDdO3rLNLZYq33vjKpY/RUxOvXjNuZf3ucb9tssqxG+2Fx/lbaYiJpPxvVnOB7kXsUD5HG/PZsUGQGafjkE3lM7jhSMqz5GekoX0xoTwHLR0RbYeNaiTcSyYGkux42yGPqawO3kJJSs3j/lMfJjyH1gp4kDQ8AEBFtpKRV6+3WP0Z0J2BrYDPScMcSpB2iuOz55pH0RERcRzq93ZU0lDAcHiNd+2il3BGS6oeaBruMWcAvImIN0hDPQX3UczswGbixMK2+7R8D9iicHb0uIp4iDTHUXr+FNGxQtlpbHdHfGfNZzta5U7Mv8N+kba3ekaTPPkVSVx5CKw5BXgAcm4cbPwNsWIjtVWDp2vWeBurbtK9lNdoPiwf0VtriPbx52HbU8Rh83/YENpX0UoP3JgL/zMn9faQECbx+yr0xsJOkYq/sOtLp4/4RsVBEbAu8r67Ol0nDBW/jjVPKVh0HbJ4PDP8NfDIiPpp3vANJO8lfctl/kC5QFpf9Kmmc+S3AD1pc5lmkBLcmaVxzOJwGfCF/tvaIWD4i3t2g3EnAtyLivQARsUQeW2/FqaQhpfUioi0iVouIlSFdZCOfnQE3SHq0j3pmk7aFvpwEHFGrPyImRbqITF7OpyLiQ3ns+HCGZr89Bdg7IjbIn/etEfHJiKg/+5hPRIyPiJ3zUN6/SRdZezvbnEi6nff5iFiedA3ldZI6ScOHZwAP1YbW8lnh/5CS/+J5na+az1p709eyrssx7pv3w62Zfz/ssy3yWPx6wB8Y5Zzg+yDpAUl/6+XtrwCHR8Qc4DBSQq3ZkZQ8n4yIufnnEEn/R7rgtzupd7wD8JvCfMeR7mB5lnSh9/f9jLeTlHAPlSTS8MHPcn2fJl1Urd2HfiTw7Yh4PtLdMGeRhi2eIN01cH2Li72IPMTQy4Gw6KBCe8yNiGeblG9I0g3AF0jDWS+QxkVXblDuIuCHwHkR8SJwB2kst5VlXEAasppBOhObRbogV3Mm6aDW7KLyWaSLh33dZvtT0q13/5O3p+tJFw3JdzF9NcfxFGm7aXpXVX/l7XwvUi/3OdL49e4tzr4r8HBu471J210j3yXdEfUC8Dvm3/ZrZpDOImfUTZ9GGia5K8d3IX2Pgfe6rMJ+uCdpmGUX4FJSB6eVttiK9B2NJ/tY/qjQ5n/4YYMVEQ+Q7qIYli9NjQYRsRLp4vuykl5sUvYHwDMq6ZusVr6I+CtwkqQzWiy7p6Q7hj6ywXGCt0GJdO/7D4HJdcNRlRUR7aR7sheXtMdIx2P9l4d3RDq73Zk0TPYfTW4SGHN8kdUGLNKXilYHdl2AkvtbSdcvHiHd7WRjU5CGVSeQLq5uV7XkDu7Bm5lVli+ymplV1GgZolmE9HXxp+j9FiszM5vfONLdRDeS7wIqGi0JfirpOSFmZtZ/GwHX1k8cLQn+KYDnnnuJ7u7RfU2go2MCXV1NH7duLXJ7lsdtWa6x0J7t7W0stdRbIefQeqMlwc8D6O7uGfUJHhgTMY4lbs/yuC3LNYbas+HQti+ymplVlBO8mVlFOcGbmVWUE7yZWUU5wZuZVZQTvJlZRTnBm5lV1Gi5D97MbMAmLr4Yiy5SfjqbNKnPf2jVb6+8+hpzXny51Dr70rRFIuIY0j/VXQVYs6+H3Ef6j7i3ACdK+mZZQZqZ9WXRRRbi0wdePNJhNHXJsVszZxiX18oQzSzgw7zxX+gbiohxwMm5vJmZjbCmPXhJ1wKkznmfDib9X8MJ+cfMzEZQKYNWETEF+DiwCXDoQOvp6Bgbx4Wyx+UWdG7P8rgtR7/hXEeDTvARsTBwCvAFSfNa6On3qqtr7qh/uM+kSRPp7BzOUbRqc3uWZ0Fuy7F0YCtzHbW3t/XZMS6jB/8OYFVgdk7uSwJtEbG4pC+VUP+A+cq6mS3IBp39JD0KLF17HRHTgQmj4S4aX1k3swVZK7dJHg9sCywLXBERXZLeGxGzgcMk/W2ogzSrGp9d2nBo5S6a/YH9G0zfspfy0wcfllm1+ezShoMfVWBmVlFO8GZmFeUEb2ZWUU7wZmYV5QRvZlZRTvBmZhXlBG9mVlFO8GZmFeUEb2ZWUU7wZmYV5QRvZlZR/qfb1jI/IMtsbHGCt5b5AVlmY4uHaMzMKsoJ3sysopzgzcwqygnezKyinODNzCrKCd7MrKKc4M3MKqrpffARcQzwWWAVYE1JdzQocyjweeC1/HOIpMvLDdXMzPqjlR78LODDwCN9lLkBmCppLWAP4PyIWGzw4ZmZ2UA17cFLuhYgIvoqU+yt3w60AR3A44OMz8zMBmgoHlUwDXhAUr+Te0fHhCEIZ2wo+3ksCzq3Z3ncluUazvYsNcFHxMbA94DNBzJ/V9dcurt7SotnLG2YnZ2j/+kpbs/yuC3LtaC2Z3t7W58d49ISfERsCJwDbC1JZdVrZmYDU8ptkhExFTgf2E7SzWXUaWZmg9M0wUfE8RHxOLACcEVE3Jmnz46I9XOxE4HFgJMj4tb8s+aQRW1mZk21chfN/sD+DaZvWfh7aslxmZnZIPmbrGZmFeUEb2ZWUU7wZmYV5QRvZlZRTvBmZhXlBG9mVlFO8GZmFeUEb2ZWUU7wZmYV5QRvZlZRTvBmZhXlBG9mVlFO8GZmFeUEb2ZWUU7wZmYV5QRvZlZRTvBmZhXlBG9mVlFO8GZmFeUEb2ZWUU3/6XZEHAN8FlgFWFPSHQ3KjAOOB7YAeoCjJJ1abqhmZtYfrfTgZwEfBh7po8zOwGrAu4ANgekRscpggzMzs4FrmuAlXSvpsSbFdgBOkdQtqZN0UNi+hPjMzGyAmg7RtGgl5u/hPwqs2N9KOjomlBTO2DNp0sSRDqFS3J7lcVuWazjbs6wEX4qurrl0d/eUVt9Y2jA7O+eMdAhNuT3L47Ys14Lanu3tbX12jMu6i+ZRYOXC65WAZsM6ZmY2hMrqwV8A7BURvwE6gG1IF2bNzGyENO3BR8TxEfE4sAJwRUTcmafPjoj1c7GzgQeB+4DrgcMlPThEMZuZWQua9uAl7Q/s32D6loW/5wH7lBuamZkNhr/JamZWUU7wZmYV5QRvZlZRTvBmZhXlBG9mVlFO8GZmFeUEb2ZWUU7wZmYV5QRvZlZRTvBmZhXlBG9mVlFO8GZmFeUEb2ZWUU7wZmYV5QRvZlZRTvBmZhXlBG9mVlFO8GZmFeUEb2ZWUU7wZmYV1fSfbgNExGTgTKAD6AKmSbqvrswywBnAisB44I/A/pJeKzViMzNrSas9+JOAEyRNBk4ATm5Q5hDgbklTgDWB9YBtS4nSzMz6rWmCzz3zdYGZedJMYN2ImFRXtAeYGBHtwCKkXvwTJcZqZmb90MoQzYrAE5LmAUiaFxFP5umdhXLfA34NPAW8Ffi5pD/3J5iOjgn9KV4pkyZNHOkQKsXtWR63ZbmGsz1bGoNv0fbA7cBHgYnAZRGxnaQLW62gq2su3d09pQU0ljbMzs45Ix1CU27P8rgty7Wgtmd7e1ufHeNWxuAfA5aPiHEA+fdyeXrRfsC5krolvQBcDGwyoKjNzGzQmiZ4Sc8AtwI75kk7ArdI6qwr+hCwBUBEjAc2A+4oLVIzM+uXVu+i2RvYLyLuJfXU9waIiNkRsX4ucwCwUUT8nXRAuBc4pdRozcysZS2NwUu6B9igwfQtC38/AGxeXmhmZjYY/iarmVlFOcGbmVWUE7yZWUU5wZuZVZQTvJlZRTnBm5lVlBO8mVlFOcGbmVWUE7yZWUU5wZuZVZQTvJlZRTnBm5lVlBO8mVlFOcGbmVWUE7yZWUU5wZuZVZQTvJlZRTnBm5lVlBO8mVlFOcGbmVVUS/90OyImA2cCHUAXME3SfQ3KfQ44FGgDeoDNJP2jvHDNzKxVLSV44CTgBEnnRMQuwMnApsUCEbE+MB3YVNLTEbEE8GqZwY60Te66ks3vuKL8im/6CUv8e1759ZZt4XH84IFnRzqK5sZCe7otyzUE7fmHNTbjytU3KbXO4dZ0iCYilgHWBWbmSTOBdSNiUl3RrwPHSHoaQNILkl4pM1gzM2tdKz34FYEnJM0DkDQvIp7M0zsL5VYHHoqIq4EJwG+AIyT1tBpMR8eElgMfCVeuvsmQHNEvOXZrxpde69A45MCLRzqEpsZKe7otyzUW2hNg0qSJw7asVodoWq1rCrA5MB74PfAocFarFXR1zaW7u+XjQVPD2ZCD1dk5Z6RDaMrtWR63ZbkW1PZsb2/rs2Pcyl00jwHLR8Q4gPx7uTy96BHgQkmvSpoDXAy8b0BRm5nZoDVN8JKeAW4FdsyTdgRukdRZV3QG8LGIaIuIhYGPAreVGKuZmfVDq/fB7w3sFxH3Avvl10TE7Hz3DMB5wDPAXaQDwp3AaaVGa2ZmLWtpDF7SPcAGDaZvWfi7G/hG/jEzsxHmb7KamVWUE7yZWUU5wZuZVZQTvJlZRTnBm5lVlBO8mVlFOcGbmVWUE7yZWUU5wZuZVZQTvJlZRTnBm5lVlBO8mVlFOcGbmVWUE7yZWUU5wZuZVZQTvJlZRTnBm5lVlBO8mVlFOcGbmVWUE7yZWUW19E+3I2IycCbQAXQB0yTd10vZAG4BTpT0zbICNTOz/mm1B38ScIKkycAJwMmNCkXEuPzerFKiMzOzAWua4CNiGWBdYGaeNBNYNyImNSh+MHApcG9pEZqZ2YC0MkSzIvCEpHkAkuZFxJN5emetUERMAT4ObAIcOpBgOjomDGS2Spg0aeJIh1Apbs/yuC3LNZzt2dIYfDMRsTBwCvCFfAAYUD1dXXPp7u4pIyRgbG2YnZ1zRjqEptye5XFblmtBbc/29rY+O8atjME/Biyfx9dr4+zL5ek17wBWBWZHxMPAAcBeEfHLgYVtZmaD1bQHL+mZiLgV2BE4J/++RVJnocyjwNK11xExHZjgu2jMzEZOq3fR7A3sFxH3Avvl10TE7IhYf6iCMzOzgWtpDF7SPcAGDaZv2Uv56YMLy8zMBsvfZDUzqygneDOzinKCNzOrKCd4M7OKcoI3M6soJ3gzs4pygjczqygneDOzinKCNzOrKCd4M7OKcoI3M6soJ3gzs4pygjczqygneDOzinKCNzOrKCd4M7OKcoI3M6soJ3gzs4pygjczqygneDOzimrpn25HxGTgTKAD6AKmSbqvrsyhwOeB1/LPIZIuLzdcMzNrVas9+JOAEyRNBk4ATm5Q5gZgqqS1gD2A8yNisXLCNDOz/mqa4CNiGWBdYGaeNBNYNyImFctJulzSv/LL24E2Uo/fzMxGQCtDNCsCT0iaByBpXkQ8mad39jLPNOABSY/3J5iOjgn9KV4pkyZNHOkQKsXtWR63ZbmGsz1bGoPvj4jYGPgesHl/5+3qmkt3d09psYylDbOzc85Ih9CU27M8bstyLajt2d7e1mfHuJUx+MeA5SNiHED+vVyePp+I2BA4B9hGkgYUsZmZlaJpgpf0DHArsGOetCNwi6T5hmciYipwPrCdpJtLjtPMzPqp1SGavYEzI+Iw4DnSGDsRMRs4TNLfgBOBxYCTI6I2366S/l5uyGZm1oqWEryke4ANGkzfsvD31BLjMjOzQfI3Wc3MKsoJ3sysopzgzcwqygnezKyinODNzCrKCd7MrKKc4M3MKsoJ3sysopzgzcwqygnezKyinODNzCrKCd7MrKKc4M3MKsoJ3sysopzgzcwqygnezKyinODNzCrKCd7MrKKc4M3MKsoJ3sysolr6p9sRMRk4E+gAuoBpku6rKzMOOB7YAugBjpJ0arnhmplZq1rtwZ8EnCBpMnACcHKDMjsDqwHvAjYEpkfEKmUEaWZm/de0Bx8RywDrApvnSTOBn0fEJEmdhaI7AKdI6gY6I2IWsD3woxbiGAfQ3t7Wj9Bbs8xSi5Ve51AYis8+FNye5XFblmtBbM9CXeMavd/W09PTZwURsR5wlqT3FqbdBewi6ebCtL8De0i6Mb8+CFhB0v4txPkh4JoWypmZ2ZttBFxbP7GlMfhhcCMpwKeAeSMci5nZWDEOeAcph75JKwn+MWD5iBgnaV6+mLpcnl70KLByYUErAY+0GOSrNDj6mJlZUw/09kbTi6ySngFuBXbMk3YEbqkbfwe4ANgrItojYhKwDfDrgURrZmaD1+pdNHsD+0XEvcB++TURMTsi1s9lzgYeBO4DrgcOl/RgyfGamVmLml5kNTOzscnfZDUzqygneDOzinKCNzOrKCd4M7OKGi1fdBoyEXEVcIykS4eo/kOBzwOv5Z9DJF0+FMuqmojoASZKmjtE9Z9I+pZ0N/Bv4GBJ/zsUyxopQ71997HcAG4BTpT0zeFc9mAMd3tFxFnAlMKkKcA2kn47HMt3D76JfF9/Xw+PuAGYKmktYA/g/IgYGw/FGOMiolkH5VuSpkhaG/giad2MjQerDJMWtu9G84wjPXBw1pAENYr1t70kTZO0dt4GdwOeA4atAzgiPfjcc/s26ctQHcBewGakRw0vDGwv6e6IWJb0cLPFgUWB30k6KNfxW9K3ZQHeBnRJWiciVgfOyPXcleerLfdAUm97IeAVYB9JtzaIbzrpyZgTgFWBwyLiaGB9SS9ExK+ApyUdXNdbvx1oy5/p8Qb1fgqYnmPrBnaTdHtEbAEcSfracSfwZUn3R8TuwKckbZfnf/11/ntn4MUcaxewq6QnctmDgO3yZ30C2EvS029eG/PFV8Z6OQ14QdI3IuLtwF9JPZZbI2Jb4AfAP4HZdcs+FwhgEeB+0nONnmsQ41XAX4ANgFci4npgHUnbRsRbSAfcgyTNlvRCYdYlSI+xHnJV2r57+YgHA5fm+Sf0s3neZAFor5o9gXMlvdpLO+wLfA14nrR/fFXS0vmBjzOAt+eiV0j6epNlASPbg39e0lTg/wEXA9dKWgc4C/ivWhng05LWA9YG1s/JEElb5aPixrnc4Xmes0mnjesCPwemFpZ5lqSpeTmHkh6D3JsPA1+UtKaki3Jcp0XENGAyaYOsNw14QFKj5D4ZOBXYMff23w88lFfe2cDOkqaQVuS5fcRV9CHSkNBawJ+An+Zl7ULaIN+f22E2cGyLdQ5qvQD7AptFxDbAOcDRObkvA5wCbC3pA8D/1S33a5LWl7QmcGdefm/WAD4u6ZPAEcCEiNiPtL5nS3r94BERh0fEA6Te5vaShuuLH1XcvomIKcDHgZ+02A6tqmR71UTEeGAn4PRe3p8CfAv4QG6HJQpv7ww8kpe9ZuGzNTWSCf78/PtmoEfS7/Lrm0jJCVKP9kcRcVuevgZpxQIQEQsDvwHOkHRRRCyey5wNIOl64O+FZa4XEVdHxB3Aj4t1NTBb0rOF10eQegbHAp+X9FqxcERsDHyPNx7pUG/zXOd9ObZXJc0h9URvk3RXLncGsHZETOwjtpprJSn/fSqwaf57K1IP6OaIuBX4KrBKC/XBINeLpJeBz5GS+4uSTszzvB+4uRDvL+uWOy0ibspPJd2JvtfNjFr7Kz2eehfSzrE6cEixoKTDJK1KOps5Ou9ow6FS23chnlOAvSWV/VDAyrVXnW2ARxudIWQfycuoPQLmjMJ71wMfi4gf5VGAlq9ZjWSCfyX/nkd62BiF17Who28ASwEb5N7tLAqnWKSN7U5Jxd5Ewx5a3rEvBA6QtAbp9G+RPuKrb8QlSKeAr5JOI4t1b0hKaNsUEli93sbt2nqLmXTRtriOFu2lXH09bcD3lcf+JK0h6YN9zFtUxnpZnTR0tGxhnLzXccuI2AjYB9gi91C+Td+ftX7dvJM05LUU8JZGM0j6I+nUfs0+6i3TmN++I6IjIm7NP+eTnlq4KjA7Ih4GDiA9f6r+YD0QVWyvoj3opfee9ZoHJF1HOvjcBOwKXNlHPfMZ7RdZlwSekvRKRCwPbF17I4+LLUXayACQ9CJwB6kHSES8jzd26EVJG0rtKZhf6WcsZ5B6ybsBM2s97IiYSup9bKfC8/EbuBzYMiLeledbJNdxHanH/u5cbjfSw9zmkJ4SNyWXHU/qhRZ9sFYfsDtvrPjfAl+JiKUKy1qrn5+3L0vS+3p5J3Ac6VT5fuD7+a3rgHUK8X6xrr4XgK6IWIS0M7Qkf8ZzSWOp55HPDCKirdCmRHpm0jKk5yWNFksyirdvSV2FTsIOkh6VtLSkVSStQlrPp0j6Uj+XNVBLMobaqxDbCqTHoc/oo76rSPlh6fx6t8L87ySdDZ9HOsitFxEt5e7RnuCPJyWxW4BfAMVb3L4DvJs8DFE4Yk4jPRjtZtLFmuvh9ZV9GHBjRFwNvNRqEBFxALAY8EOl2+wu4I0hhhPzeycXjt5v6iXmoZm9SHdy3EZKeKvkU7JdgRkRcTtpuGGXPM91wBWkjfRS4O66av8EfDfXtynpAg2SziYlvT/lOm8CWu3Bt6LheskHofNJtyPeR9pptoqITyg9lfRLwCUR8RfS2UnNZaSD2T35774OlPVOB06XdC1pbHLZiNib1CP6ZUTckYepfgZ8Tg0u3I6gsbB9jyZjtb12Ay6R9M/eCki6DTgauC4iriF1eGo3CXwEuCVvx5eRhsi6W4nVDxsbo6LuDhszG9vyWcCc/Pd0YDVJuwymzsp/0cnMbIw4KiI+CIwnDSUOeujLPXgzs4oa7WPwZmY2QE7wZmYV5QRvZlZRTvBmZhXlBG9mVlFO8GZmFfX/AcIEQ4XQ/ZIFAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "wankels.efficiency.plot(kind='bar')\n", + "plt.xticks(np.arange(4),wankels.car_name)\n", + "pd.Series([merged['efficiency'].mean() for i in range(len(wankels))]).plot(kind='line',color='red')\n", + "plt.title('Mazda Rotary Efficiency (red line is average)');" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "1476617f-8097-4294-8c42-fb86ff96c1d0", + "metadata": { + "execution": { + "iopub.execute_input": "2022-08-01T04:20:12.489303Z", + "iopub.status.busy": "2022-08-01T04:20:12.489077Z", + "iopub.status.idle": "2022-08-01T04:20:12.574526Z", + "shell.execute_reply": "2022-08-01T04:20:12.574107Z", + "shell.execute_reply.started": "2022-08-01T04:20:12.489288Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAELCAYAAADJF31HAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbP0lEQVR4nO3deZhcVZ3/8Xd3BwKYkMTQwQEUGCBfRbawiKOgDIPbKIuIQiAEfgqyCMjgPC4MYmBkFIQR2QZG2SERRUE2ZQQFicLoCAFZ/AgIGiGModkCQ6Kk8/vjnIbbTVdXdXd1d+rweT1PP911695zT51763PPPXXrdtuKFSswM7PW1z7WFTAzs+ZwoJuZFcKBbmZWCAe6mVkhHOhmZoVwoJuZFcKB3mIi4qKI+PJY16N0EfHziJjRpLI2iIgVETGuxvOPRsQu+e9jI+JbzVhvn3XsGBFqdrmtICLWjogHImL8WNdlpPW7g1njIuJRYB1gHUlPVqYvALYENpT06JhUro9c17WB5cDzwI+AIyQ93+CyB0m6aSTrWFnfRcABwO6SrqlMPx34NPD/JF0UEQcC5wMvAt3A74HjJF2X558InADsCXQCXcAvgVMk/bLGuncFlki6a0Re3AAk/dsIlXsbECNR9spO0v9GxE+BTwJnjnV9RpJ76M3xCDCz50FEbA6sPnbVGdCukiYAWwEzgC+MxkojomMIi/2OFOo9ZYwDPgo83Ge+2/NrmkwK9+9ExOtzj+wnwObAh4A1gbcA3wb+cYD1HgpcWuvJWj1tG7oh7h+DcTlwyAivY8x5x2yOS4HZvHL0PwC4BHh5aCQiPpgfbwQ8C5wvaU5+7izgwEp5qwFfljQnn/afD2wC3ACsqJQ5Ja97e9K2/DlwqKQ/1auwpCci4kZSsPeUtxvwFWBdYAFwmKQHIuJS4E3AtRGxHDhR0ikR8V1gR9LB6+48/325rItIveb1gXcDcyLin4F1Jb2U5/kI8EVJL9ehj2uBWRExRdLTwPuBe4CJNV5Td0RcAJwB/G1+besBO0l6Ic/2AnBl/nmViFgV2JnKmz8i5gCbAUuB3YBj8mv/d9KBoRu4EPiSpOU5nE4mbdPngNNqvL7+1j8H2FjSrIjYgNRZOBD4V2AN4OuSTsrztgOfBQ4mHcxuJm3/p/opdyfgMknr5cefA44iHeQeBw6XdHM/yw203/4IuE7SWZX57wZOkPT9iHgz6T2xDbCYtK2/k+e7iN77x+75ANzvuvIys3M7TABOBz5BPmtsoC3+G/jbiFhf0h/6b/3W5x56c9wBrBkRb8lv5r2By/rM8wIp9CcDHwQOi4g9ACQdIWlC7mXuADwN/CCHy9Wk0H498F3gI5Uy20lBsj4pcF8EzqIBEbEe8AHgofx4OjAPOJo0NHEDKcBXlbQ/8Edy717SKbmYH5IONNOAO0m9oKp9gZNIAXwmabjjPZXnZzFAT5gUoNcA++THs0kHylqvaRxwEGk46UFgF+DGSpg3YhOgu5+D4u6kg8Bk0uu8GHgJ2Jh0pvPevG5IofKhPH1bYK9BrL8/O5CGS/4BOD4i3pKnHwXsQQrEdUj7zdn1CouIAI4AtpM0EXgf8GiN2Wvut8Bcep+ZbkraF6+PiNcBP87zTMvznRMRb62UXd0/5g+0rlz2OcB+wN8Ak0gdjx4DtkXuRDxEGgYtlnvozdPTS78V+C3wWPVJSbdUHt4TEfNIO9/VPRMjojM/PlLSXRHxLmAV4HRJK4ArI+KYSpldwPcqy58E/LROPa+OiBWkXs5PgC/l6XsD10v6cS7rVNJY9TuAW/opB0kXVNY9B3g6IiZJejZP/oGkn+e/l0bExaQQ/2FEvJ4UJIfXqe8lwNciYi6pvQ4APtVnnrdHxDOkgH0I+LCkZyNiLeB/KnXcKr+WdmCRpP7GlCcDS/qZfrukq3M5a5IOhpMlvQi8EBFfJ43Rngd8jLTNFub5vwLsVOd1DuSEvJ67cw94S+AB0lnEET0Hn7wN/hgR+/ecBdWwHBgPbBoRiwf6jKfOfnsV8B+VXu9+wPclLctB/KikC/Oyd0bE90gHt/vytF77B733s77r2gu4VtL8/FqPJ4V4j0baYglp+xbLgd48lwI/Azakn15kRGwPfJV06r4q6Q313crzq5B6gHMlfTtPXgd4LId5jz9UllkD+DppKGJKnjwxIjokLa9Rzz3yKeq7Sb2ntYBn8rpeLjsPXyykdy+o+no6SL2rj5J69N35qbVIp8sAC/ssdhnwQERMIIXebZIW1ahnTz3m5wPdcaTT+xdTB7OXOyTt0M/iXaTeXE9ZC4DJ+YqSWleSPE3/QzrV17I+6UC7qFKX9so86/SZf7in+E9U/v4/0sG4px5XRUR35fnlpA++e3UoqiQ9FBFHA3OAt+aht2MkPd533oH2W0lLIuJ60hnUyfn3Jyt12z4faHuMo/cZWa/9o857pFebSvq/iOiqLN5IW0wk7evF8pBLk+QeyiOkMdXv9zPLXNLwwRslTQLOBdoqz59J6kEcV5m2CFg3Iqrzvany92dIp+LbS1oTeFeeXp2/Vn1vBS4CTs2THie9KQDI63wjr7wZ+t6Wc1/SMMQupNPfDfpZd69lJD0G3A58GNifgYdbqi4jvdaawy013Ay8N5/+N+pBoC0i+h7Iqq9lIbAMWEvS5PyzpqSe4YRFpLbrUd1mzbQQ+EClDpMlrZbbeUCS5uaD4Pqk13ZyjVnr7bfzgJkR8Xekz1J6zhAXArf2qdsESYdVlu27Tw20rkWkz0MAiIjVgamNtkUejtuY9FlPsRzozfUJYOcaY7YTgackLY2It5ECEYCIOIR0armvpGoP43bSMMJRETEuIvYE3tanzBeBZ/IQxpcYnNOB9+ShiO8AH4yIf8hnC58hhdYv8rz/S/qgsbruZaRe8BpAo5fbXUL68Gpz0il7I84gjb3/rMH5q+taROq5bRYRHRGxGmlcu1+S/grcRNoeteZZBPwXcFpErBkR7RGxUT7rgdSWR0XEevmD688Pst6NOhc4KSLWhzRkFxG711sokp3zh5BLSftQrTO6mvttdgPpoHAicEVl/70OmB4R+0fEKvlnu8r4/2DXdSWwa0S8I3+2dAK9Dyz12uJtpCGgYj8QBQd6U0l6WNL/1Hj6cODEiFgCHE960/eYSQrLxyPi+fxzrKS/kK6fPpA0FLA3vXv/p5N6RU+SPpj90SDru5gUel+UJNL49pm5vF1JH4L+Jc/+FeC4iHgm0tUql5CGEh4D7s/rb8RV5NPjRj+slPSUpJv7DD01stxS4O9z/a4nXXEiYDvSkE8t55HOIAYymzQscD9p21zJK8M73wRuJPUG76T/M7Zm+AapR/tfeb+6g3TFUz3jSUMbT5KGc6YBx9aYd6D9FknLSK9vF1IPu2f6EtIHxfuQzv6eIJ0FDPTlnprryldPHUm65HQR6Wz2z6ROBdRvi/1IoV+0Nv+DCxttEfEwcIhG6UtKQxER88kfTo91XezV8ucwzwCbSHqkzrzTSBcrzMgH+WI50G1URbr2/GRgep/hJbMBRfoG782koZbTSD3wrQd75lYyX+VioyYibgE2BfZ3mNsQ7E76IL2NdDnqPg7z3txDNzMrhD8UNTMrxFgOuYwnXW2wiNqXTJmZWW8dpCuqfsUrV/kAYxvo2wG3jeH6zcxa2Y6ke+C8bCwDfRHA00+/QHf3yj2OP3XqBLq66t4y3Brgtmwut2dztUJ7tre3MWXK6yBnaNVYBvpygO7uFSt9oAMtUcdW4bZsLrdnc7VQe75qqNofipqZFcKBbmZWCAe6mVkhHOhmZoVwoJuZFcKBbmZWCAe6mVkhfLdFM2tJE9dcndXGNz/COjv7+5eyQ7d02Ussee7FppZZiwO9jvFXzIUr5zHpr77dTFOs0uG2bKbXcHuuukoHv3n4yaaW+ePNduGnm/59U8u89rTdWdLUEmvzkIuZWSHcQ69j2d77whGH8Ozi0TrGlq2zc6Lbsoley+3Z2TmRYz/zg7GuxkrFPXQzs0I40M3MCuFANzMrhAPdzKwQDnQzs0I40M3MCuFANzMrhAPdzKwQDnQzs0I40M3MCuFANzMrhAPdzKwQDnQzs0I40M3MCuFANzMrhO+HbjZK/C/TbKQ50M1GyWrjx7FrC/xDhtH8l2nWXB5yMTMrhAPdzKwQDnQzs0I40M3MCuFANzMrhAPdzKwQDnQzs0I40M3MClH3i0URMRW4FNgIWAY8BBwiaXFETAcuBqYCXcBsSQ+OYH3NzKyGRnroK4BTJIWkLYCHga/m584FzpY0HTgbOG9kqmlmZvXUDXRJT0m6pTLpDmD9iJgGbA3My9PnAVtHRGfTa2lmZnUNagw9ItqBw4BrgDcCj0laDpB/P56nm5nZKBvszbnOBJ4HzgJmNKMCU6dOaEYxI67Zd7R7LXNbrvy8jZprtNqz4UCPiFOBTYBdJXVHxEJg3YjokLQ8IjqAdYCFg6lAV9fzdHevGFSlR1tn50QWL/b955rhtdyWrRSSrbCNXqvt2d7eVrMj3NCQS0ScBGwD7CFpGYCkPwMLgJl5tpnAXZIWD7fCZmY2eI1ctvhW4Fjgd8AvIgLgEUkfBg4FLo6I44GngdkjWFczMxtA3UCXdB/QVuO53wLbN7tSZmY2eP6mqJlZIRzoZmaFcKCbmRWiuH8S3Qr/Wd3/Vd3MRkJxgd4K/1nd/1XdzEaCh1zMzArhQDczK4QD3cysEA50M7NCONDNzArhQDczK4QD3cysEMVdh27N0wpf0gJ/UcushwPdamqFL2mBv6hl1sNDLmZmhXCgm5kVwoFuZlYIB7qZWSEc6GZmhXCgm5kVwoFuZlYIB7qZWSEc6GZmhXCgm5kVwoFuZlYIB7qZWSEc6GZmhXCgm5kVwoFuZlYIB7qZWSEc6GZmhXCgm5kVwoFuZlYIB7qZWSEc6GZmhRhXb4aIOBX4CLABsLmke/P0R4Gl+Qfgc5JuHJlqmplZPXUDHbga+AZwWz/P7dUT8GZmNrbqBrqk+QARMfK1MTOzIWukhz6QyyOiDZgPHCvpmcEWMHXqhGFWoTV1dk4c6yoUxe3ZXG7P5hqt9hxOoO8oaWFEjAdOB84CZg22kK6u5+nuXjGMavTWKjvi4sVLxroKdbVKW4Lbs9ncns3VzPZsb2+r2REe8lUukhbm38uAc4B3DrUsMzMbviEFekS8LiIm5b/bgH2ABU2sl5mZDVIjly2eAewJvAG4KSK6gF2B70VEB9AB3A8cPpIVNTOzgTVylctRwFH9PDWj+dUxM7Oh8jdFzcwK4UA3MyuEA93MrBAOdDOzQjjQzcwK4UA3MyuEA93MrBAOdDOzQjjQzcwK4UA3MyuEA93MrBAOdDOzQjjQzcwK4UA3MyuEA93MrBAOdDOzQjjQzcwK4UA3MyuEA93MrBAOdDOzQjjQzcwK4UA3MyuEA93MrBAOdDOzQjjQzcwK4UA3MyuEA93MrBAOdDOzQjjQzcwK4UA3MyuEA93MrBAOdDOzQjjQzcwK4UA3MyvEuHozRMSpwEeADYDNJd2bp08HLgamAl3AbEkPjlxVzcxsII300K8G3gX8oc/0c4GzJU0HzgbOa27VzMxsMOoGuqT5khZWp0XENGBrYF6eNA/YOiI6m19FMzNrxFDH0N8IPCZpOUD+/XiebmZmY6DuGPpImzp1wlhXYUx0dk4c6yoUxe3ZXG7P5hqt9hxqoC8E1o2IDknLI6IDWCdPH5Surufp7l4xxGq8WqvsiIsXLxnrKtTVKm0Jbs9mc3s2VzPbs729rWZHeEhDLpL+DCwAZuZJM4G7JC0eSnlmZjZ8dQM9Is6IiD8B6wE3RcR9+alDgSMj4nfAkfmxmZmNkbpDLpKOAo7qZ/pvge1HolJmZjZ4/qaomVkhHOhmZoVwoJuZFcKBbmZWCAe6mVkhHOhmZoVwoJuZFcKBbmZWCAe6mVkhHOhmZoVwoJuZFcKBbmZWCAe6mVkhHOhmZoVwoJuZFcKBbmZWCAe6mVkhHOhmZoVwoJuZFcKBbmZWCAe6mVkhHOhmZoVwoJuZFcKBbmZWCAe6mVkhHOhmZoVwoJuZFcKBbmZWCAe6mVkhHOhmZoVwoJuZFcKBbmZWCAe6mVkhHOhmZoVwoJuZFWLccAuIiEeBpfkH4HOSbhxuuWZmNjjDDvRsL0n3NqksMzMbAg+5mJkVolk99Msjog2YDxwr6ZkmlWtmZg1qRqDvKGlhRIwHTgfOAmY1uvDUqROaUIXW09k5cayrUBS3Z3O5PZtrtNpz2IEuaWH+vSwizgGuGczyXV3P0929YrjVeFmr7IiLFy8Z6yrU1SptCW7PZnN7Nlcz27O9va1mR3hYY+gR8bqImJT/bgP2ARYMp0wzMxua4fbQ1wa+FxEdQAdwP3D4sGtlZmaDNqxAl/R7YEaT6mJmZsPgyxbNzArhQDczK4QD3cysEA50M7NCONDNzArhQDczK4QD3cysEA50M7NCONDNzArhQDczK4QD3cysEA50M7NCONDNzArhQDczK4QD3cysEA50M7NCONDNzArhQDczK4QD3cysEA50M7NCONDNzArhQDczK4QD3cysEA50M7NCONDNzArhQDczK4QD3cysEA50M7NCONDNzArhQDczK4QD3cysEA50M7NCONDNzArhQDczK4QD3cysEOOGW0BETAcuBqYCXcBsSQ8Ot1wzMxucZvTQzwXOljQdOBs4rwllmpnZIA2rhx4R04CtgffkSfOAsyKiU9LiOot3ALS3tw2nCv2aNmX1ppfZbCPxukdCK7QluD2bze3ZXM1sz0pZHX2fa1uxYsWQC46IbYBLJL21Mu1+YJakO+ssvgNw25BXbmb22rYjML86Ydhj6MPwK1KFFgHLx7AeZmatpAP4G1KG9jLcQF8IrBsRHZKWR0QHsE6eXs8y+hxdzMysIQ/3N3FYH4pK+jOwAJiZJ80E7mpg/NzMzJpsWGPoABHxZtJli1OAp0mXLaoJdTMzs0EYdqCbmdnKwd8UNTMrhAPdzKwQDnQzs0I40M3MCjGWXywaMRFxC3CqpOtGqPwvAvsAL+WfYyXdOBLrKk1ErAAmSnp+hMo/h/Qt5G7gr8DnJd08EusaKyO9fw+w3gDuAs6R9M+jue6hGu22iohLgC0qk7YA9pB0zWis3z30fkREe0QMdPOFXwLbSdoS+DhwRUS0xk0lWlxE1OuEfEHSFpK2Ag4ibZvWuDHJKGlg/+5vmQ7SjfeuHpFKraQG21aSZkvaKu9/B5Au5R61zt6o9dBzz+w4YA/SrXYPBnYB3g+sAnxU0gMR8QbSTb7WBFYDrpf02VzGNcCbcpGvB7okzYiITYELczn35+V61vsZUm96HLAUOEzSgn7qNwfYGJgAbAQcHxGnANtKejYiLgKekPT5Pr3xe4C2/Jr+1E+5HwLm5Lp1AwdIuici3g98hfQ13sXAIZIeiogDgQ9J2isv//Lj/Pd+wHO5rl3A/pIey/N+Ftgrv9bHgIMlPfHqrdGrfs3YLucDz0o6JiLWBv6b1CtZEBF7Av8GPAXc0GfdlwMBjAceAj4u6el+6ngL8Atge2BpRNwBzJC0Z0SsQTrAflbSDZKerSw6CRiV63JL2r9rvMTPA9fl5ScMsnn61qX0turxCeBySctqtMMRwKeBZ0jvjU9JWivf9HAusHae9SZJ/1RnXcDo99CfkbQd8DngB8B8STOAS4B/6ZkH2FXSNsBWwLY5/JC0Wz7yvTvPd2Je5lLSaeDWwFnAdpV1XiJpu7yeL5Ju91vLu4CDJG0u6apcr/MjYjYwnbQT9jUbeFhSf2E+HfgWMDP35t8OPJI32KXAfpK2IG28yweoV9UOpCGeLYFbgW/kdc0i7YRvz+1wA3Bag2UOa7sARwC7RMQewGXAKTnMpwHfBHaX9A7gL33W+2lJ20raHLgvr7+WzYD3SfogcBIwISKOJG3vGyS9fLCIiBMj4mFSb/KjkkbryxYl7t9ExBbA+4CvN9gOjSiyrXpExKrAvsAFNZ7fAvgC8I7cDpMqT+8H/CGve/PKa6trtAP9ivz7TmCFpOvz41+TwghSj/VrEXF3nr4ZaWMCEBGrAN8HLpR0VUSsmee5FEDSHcBvKuvcJiJ+FhH3Av9eLasfN0h6svL4JNLR/zRgH0kvVWeOiHcD/8ortz7o6z25zAdz3ZZJWkLqad4t6f4834XAVhExcYC69Zhf+Sbut4Cd89+7kXo5d0bEAuBTwAYNlAfD3C6SXgQ+Rgrz5ySdk5d5O3Bnpb7/2We9syPi1xHxG9LOv9UAdZzb0/6SuoFZpDfEpsCx1RklHS9pI9LZyin5zTUaitq/K/X5JnCopGbeRK+4tupjD+CP/Z0BZDvldfTcJuXCynN3AO+NiK/lM/yGP28a7UBfmn8vJ92ci8rjnuGfY0i3Edg+916vpnLaRNq57pNU7S302wPLb+QrgaMlbUY6pRs/QP36Ntwk0mndMtKpYbXsvyMF2B6VwOqr1thbW606kz5krW6X1WrM17ecNuDLyuN3kjaT9M4Blq1qxnbZlDQU9IbKOHfNsceI2BE4DHh/7oUcx8Cvte+22ZA0hDUFWKO/BST9hHS6vvkA5TZTy+/fETE1IhbknytId/XbCLghIh4FjgYOjoi+B+fBKrGtqj5Ojd55VjMDJN1OOtj8Gtgf+OkA5fSyMn4oOhlYJGlpRKwL7N7zRB7bmkLaqQCQ9BxwL6mHR0S8jVfewKuRdo6euz8ePsi6XEjqBR8AzOvpQUfEdqQexl4a+L7vNwL/GBGb5OXG5zJuJ/XI35znO4B0U7MlpLuobZHnXZXUy6x6Z095wIG8srGvAQ6PiCmVdW05yNc7kMnU3i4bAqeTTn8fAr6cn7odmFGp70F9ynsW6IqI8aQ3QEPya7ycNB76bXLPPyLaKm1KRGwLTAN+32jZo2AyK/H+Lamr0inYW9IfJa0laQNJG5C28zclfXKQ6xqKybRQW1Xqth7p1uBzByjvFlI2rJUfH1BZfkPSme63SQe1bSKioaxeGQP9DFJo3QX8B1C95OxLwJvJwwqVo+Js4MiIuJP0Acsd8PIGPh74VUT8DHih0UpExNHA6sDJSpe9fZdXhgzOyc+dVzlCv6oXmIdaDiZdaXE3KeA2yKdZ+wNzI+Ie0vDBrLzM7cBNpB3zOuCBPsXeCpyQy9uZ9KEKki4lhdytucxfA4320BvR73bJB50rSJcHPkh6o+wWER9QuhvnJ4FrI+IXpLOPHj8kHbx+m/+u9w9Rqi4ALpA0nzS++IaIOJTU6/nPiLg3DzudCXxM/XzQOoZaYf9eWbRqWx0AXCvpqVozSLobOAW4PSJuI3Vuej7Q3wm4K+/DPyQNd3U3UlffnKuFRJ8rYMysdeVe/pL89xxgY0mzhlNmkV8sMjNrAV+NiHcCq5KGBYc9jOUeuplZIVbGMXQzMxsCB7qZWSEc6GZmhXCgm5kVwoFuZlYIB7qZWSH+P2hbVVkigWHaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "wankels.mpg.plot(kind='bar')\n", + "plt.xticks(np.arange(4),wankels.car_name)\n", + "pd.Series([merged['mpg'].mean() for i in range(len(wankels))]).plot(kind='line',color='red')\n", + "plt.title('Mazda Rotary MPG (red line is average)');" + ] + }, + { + "cell_type": "markdown", + "id": "4f793604-5c51-44b7-9cb6-301151304400", + "metadata": {}, + "source": [ + "## Diesels" ] }, { "cell_type": "code", "execution_count": 9, - "id": "20eaa490-f70b-408e-a9fa-c4ba05c8a1ac", + "id": "c7aece22-1e78-4a48-b969-f1207ba09aad", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:51.044643Z", - "iopub.status.busy": "2022-07-21T20:29:51.044307Z", - "iopub.status.idle": "2022-07-21T20:29:51.062694Z", - "shell.execute_reply": "2022-07-21T20:29:51.061875Z", - "shell.execute_reply.started": "2022-07-21T20:29:51.044616Z" + "iopub.execute_input": "2022-08-01T04:20:12.575478Z", + "iopub.status.busy": "2022-08-01T04:20:12.575129Z", + "iopub.status.idle": "2022-08-01T04:20:12.588438Z", + "shell.execute_reply": "2022-08-01T04:20:12.587822Z", + "shell.execute_reply.started": "2022-08-01T04:20:12.575463Z" }, "tags": [] }, @@ -577,36 +578,52 @@ " \n", " \n", " \n", - " 274\n", - " 20.3\n", - " 5\n", - " 131.0\n", - " 103.0\n", - " 2830.0\n", - " 15.9\n", + " 244\n", + " 43.1\n", + " 4\n", + " 90.0\n", + " 48.0\n", + " 1985.0\n", + " 21.5\n", " 78\n", " 2\n", - " audi 5000\n", - " 0.786260\n", - " 0.046290\n", - " 26.2\n", - " 33.322330\n", + " volkswagen rabbit custom diesel\n", + " 0.533333\n", + " 0.045340\n", + " 22.500000\n", + " 576.000000\n", " \n", " \n", - " 297\n", - " 25.4\n", - " 5\n", - " 183.0\n", - " 77.0\n", - " 3530.0\n", - " 20.1\n", - " 79\n", + " 325\n", + " 44.3\n", + " 4\n", + " 90.0\n", + " 48.0\n", + " 2085.0\n", + " 21.7\n", + " 80\n", " 2\n", - " mercedes benz 300d\n", - " 0.420765\n", - " 0.051841\n", - " 36.6\n", - " 86.984416\n", + " vw rabbit c (diesel)\n", + " 0.533333\n", + " 0.043165\n", + " 22.500000\n", + " 576.000000\n", + " \n", + " \n", + " 326\n", + " 43.4\n", + " 4\n", + " 90.0\n", + " 48.0\n", + " 2335.0\n", + " 23.7\n", + " 80\n", + " 2\n", + " vw dasher (diesel)\n", + " 0.533333\n", + " 0.038544\n", + " 22.500000\n", + " 576.000000\n", " \n", " \n", " 327\n", @@ -621,8 +638,56 @@ " audi 5000s (diesel)\n", " 0.553719\n", " 0.041017\n", - " 24.2\n", - " 43.704478\n", + " 24.200000\n", + " 897.800000\n", + " \n", + " \n", + " 358\n", + " 28.1\n", + " 4\n", + " 141.0\n", + " 80.0\n", + " 3230.0\n", + " 20.4\n", + " 81\n", + " 2\n", + " peugeot 505s turbo diesel\n", + " 0.567376\n", + " 0.043653\n", + " 35.250000\n", + " 1600.000000\n", + " \n", + " \n", + " 359\n", + " 30.7\n", + " 6\n", + " 145.0\n", + " 76.0\n", + " 3160.0\n", + " 19.6\n", + " 81\n", + " 2\n", + " volvo diesel\n", + " 0.524138\n", + " 0.045886\n", + " 24.166667\n", + " 962.666667\n", + " \n", + " \n", + " 386\n", + " 38.0\n", + " 6\n", + " 262.0\n", + " 85.0\n", + " 3015.0\n", + " 17.0\n", + " 82\n", + " 1\n", + " oldsmobile cutlass ciera (diesel)\n", + " 0.324427\n", + " 0.086899\n", + " 43.666667\n", + " 1204.166667\n", " \n", " \n", "\n", @@ -630,19 +695,31 @@ ], "text/plain": [ " mpg cylinders displacement horsepower weight acceleration \\\n", - "274 20.3 5 131.0 103.0 2830.0 15.9 \n", - "297 25.4 5 183.0 77.0 3530.0 20.1 \n", + "244 43.1 4 90.0 48.0 1985.0 21.5 \n", + "325 44.3 4 90.0 48.0 2085.0 21.7 \n", + "326 43.4 4 90.0 48.0 2335.0 23.7 \n", "327 36.4 5 121.0 67.0 2950.0 19.9 \n", + "358 28.1 4 141.0 80.0 3230.0 20.4 \n", + "359 30.7 6 145.0 76.0 3160.0 19.6 \n", + "386 38.0 6 262.0 85.0 3015.0 17.0 \n", "\n", - " model_year origin car_name efficiency load bore_size \\\n", - "274 78 2 audi 5000 0.786260 0.046290 26.2 \n", - "297 79 2 mercedes benz 300d 0.420765 0.051841 36.6 \n", - "327 80 2 audi 5000s (diesel) 0.553719 0.041017 24.2 \n", + " model_year origin car_name efficiency \\\n", + "244 78 2 volkswagen rabbit custom diesel 0.533333 \n", + "325 80 2 vw rabbit c (diesel) 0.533333 \n", + "326 80 2 vw dasher (diesel) 0.533333 \n", + "327 80 2 audi 5000s (diesel) 0.553719 \n", + "358 81 2 peugeot 505s turbo diesel 0.567376 \n", + "359 81 2 volvo diesel 0.524138 \n", + "386 82 1 oldsmobile cutlass ciera (diesel) 0.324427 \n", "\n", - " grunt \n", - "274 33.322330 \n", - "297 86.984416 \n", - "327 43.704478 " + " load bore_size grunt \n", + "244 0.045340 22.500000 576.000000 \n", + "325 0.043165 22.500000 576.000000 \n", + "326 0.038544 22.500000 576.000000 \n", + "327 0.041017 24.200000 897.800000 \n", + "358 0.043653 35.250000 1600.000000 \n", + "359 0.045886 24.166667 962.666667 \n", + "386 0.086899 43.666667 1204.166667 " ] }, "execution_count": 9, @@ -651,28 +728,72 @@ } ], "source": [ - "merged[merged.cylinders==5]" + "diesels = merged[merged.car_name.str.contains('diesel')]\n", + "diesels" ] }, { "cell_type": "markdown", - "id": "33fb0fbd-595d-4129-bfe0-dd4077553f9a", + "id": "79979a1e-de58-4610-8878-6f374f500d1c", "metadata": {}, "source": [ - "Look at the gruntiness and mpg of these diesels! For comparison the first Audi appears to be a gas engine. Consider the displacement and power. The one below as well" + "All of the diesels get higher than average MPG" ] }, { "cell_type": "code", "execution_count": 10, + "id": "92f0bf1a-af7b-4a26-b422-8ca01fdfde1b", + "metadata": { + "execution": { + "iopub.execute_input": "2022-08-01T04:20:12.590154Z", + "iopub.status.busy": "2022-08-01T04:20:12.589539Z", + "iopub.status.idle": "2022-08-01T04:20:12.714518Z", + "shell.execute_reply": "2022-08-01T04:20:12.713877Z", + "shell.execute_reply.started": "2022-08-01T04:20:12.590124Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAELCAYAAACSxV/CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA2XElEQVR4nO3deZxcVZ3+8U8nrEIIGCIKCAnCPKIgmwEVgSAoigiOMqggi6CguLLoIAwuI0QQUH6KjqBIAAeRERWQRWQJi4Lsm8ijsq8SEEnCnqR/f5zTUmmqOp3QN92dPO/Xi1fq3nPvOd86VfT91jnnVnV1d3cTERER0aQRgx1ARERELPyScERERETjknBERERE45JwREREROOScERERETjknBERERE45JwREQjJP1Q0qEN1j9OUrekxZpqY35JGivJkpYaoPr2kHRlh7I5+kHS+ZJ2H4h2e7VzsKQfD3S9w4Gk7SWdPthxDHdD7n/UiBj6JN0DrATMBGYBtwOnACfYng1g+5ODFiD/inFlYGXbj7XsvwlYDxhv+x5Jk4Gdgefrf9cDn7V9Rz1+LeAbwFbAksDfgQuAI20/0KH5g4CTbD878M+sb7bf01C9k5qodziwfbakSZLeZPuWwY5nuMoIR0TMr/fZHgWsDhwB/Cdw4uCG9BJ3Ax/p2ZC0LrB0m+O+ZXtZYFXgUWByPX5N4I/AQ8AGtpcDNgXuBN7erkFJSwK7Az/tUN4lKX97B9ACGuX6GbD3AmhnoZURjoh4WWw/CZwt6RHgaknH2L6tjhw8YPu/ACRtBxwGjKOMiHyy59OipP8EPgcsR7m472v74nph/hLwCWB54OJ63j/6Gd6pwG7A9+r27pSRmMM6PJenJZ0G/Lzu+hrwe9v7txzzKHBsH21uAvyzdfRD0hTg98BEYENg3XqR/B6wETAVONT2GfX4McBJ9fg7gN/27+n+q62f2v6xpD2AjwNXA3sB/6T07fn12NHAt4Ftgdm1za/antWm3q8Ba9r+aJ0q+jHwHmAk8FdgO9t/b3PeQZTX71XA/cAhtn9VE7O/A2+3fVs9dixwH7C67Ufn8p65B/gfYJeyqWWAA9u1VY8fCXyL8h6YDhxD6f/Fbc/sR19MoSSRn5nbaxDtJcuOiAFh+xrgAWCz3mWSNgR+AuwDjAGOpyQpS0oS5Y/4hDpisg1wTz31c8D7gS0o0yNPAN+fh7CuBpaTtHa94HyIDiMPNc5lKRewG+uurYEz56E9gHUBt9m/K+UT8ihKgvE74DTKxfEjwA8kvbEe+33gWeA1wJ71v/m1SY1nRcoF90RJXbXsZMq02JrABsC7KAnK3OwOjAZeS3k9Pwk80+HYOynvidHA14GfSnqN7eeAX9IyAgXsBFxWk42O75mW4z8CvBdY3vbMTm3VYz9BSZDWpyR97+8V59z64s/AOEnL9dUx0VlGOCJiID0EvLLN/k8Ax9v+Y90+WdLBwFuABylrI94gaarte1rO2wf4TM9oQf2UfZ+kXechpp5RjssoowUPtjnmQEmfoVzkrwH2qPtXBB7pOagecxjlb+fPbH+iTV3LUz5B9zbZ9p9qPe8G7rF9Ui27QdKZwI6S7gA+CKxr+yngNkknA5v3+xnP6V7bP6rtngz8AFhJUjflAry87WeApyR9h5IUHT+XOl+gJAFr1hGH6zsdaPv/WjZ/LunLwMbAWZSE6wTgkFq+c0vbfb1nLqv7vmv7/n62tRPw/1reS0dQ1uUgaaV+9EXPa7o8MK1z10QnSTgiYiCtArSb7lgd2F3SZ1v2LUFZ0HmZpC9Qpi/eKOm3wP62H6rn/UrS7JbzZlEWrPbXqcDlwHjKdEo7R/dM/fTyOGWUAQDbxwHHSTqMst6jnScooxi93d/yeHVgE0n/bNm3WI11bH3cevy9Hdrqj38lTHXKCGBZSmK4OPBw3Qdl1Pv+3hW0cSpldON0SctTRo0Osf1C7wMl7QbsT5kW6Wl7xfr4EmBpSZvUONcHflXLOr5nWrbniHUuba3c6/jer8fc+qLnNf1n7+cY/ZOEIyIGhKQJlISj3e2b9wOH2z683bm2TwNOq8PVxwNHUqYg7gf2tP37Nu2N609ctu+VdDdlbn6v/pzT4mLgA5T5/P66Bdivzf7Wn+a+nzJ18M7eB9Wpn5mUC/oddfdq89B+f90PPAesWKcj+q0mFl8Hvl5fh/Mo0zZzLBqWtDrwI8pIwlW2Z9W7hLpqPbMlnUGZGvk78BvbPSMJfb5nqn/16dzaAh5mziTxtS2P+9MXa1NGpTK6MZ+ScETEy1KThM2B/0dZrHhrm8N+RBmpuIgyZfEKyoLIyymfPFehLKp8lrIWoGd92Q+BwyXtXhOHscDbbJ81j2HuBaxg+6l5vKPha8A1kr4NHGP7QUkrUi4+7aZNoDy/5SWtYrvd9A3Ab4Aj6tRQz/c7rA/MsP1nSb8EviZpT8qn9d15cV3LgLD9sKQLgWNUvi9lBmUUaFXbl/V1rqQtgccoCzmnUaZYXrLQFFiGkhRMred9DFin1zGnAb+mjCYd0rK/43umJSmZl7bOAD4v6VzgKcpdVUC/+2IL4Py2HRL9kkWjETG/zpE0nXo3AGWF/8faHWj7Osqc/HGUKYe/8eI6iSUpt9U+RhlWfxVwcC37f8DZwIW1raspiyDnie07awzzet5fKGsGVgVurjH8nrJWpe2Xmtl+nnJb7Uf7qHc6ZVHih2tdj1BGdXoWRH6GMh3wSK1rXkZY5sVulGmK2ymvyy9omULqw6vrsdMoiykvo81iXNu3U+4GuYoygrEupf9aj/kjJQFYmZYL+lzeMy/Rj7Z+BFxIGYG6kTIq0/M9MjD3vvgIc1/bEn3o6u7unvtRERHRb3Uk5grKd3d0unsjBpGk9wA/tL16P459H7Cr7Z2aj2zhlYQjIiIWepKWBrakjHKsRLnd+WrbXxjMuBYlmVKJiIhFQRdloesTlCmVPwNfGdSIFjEZ4YiIiIjGZYQjIiIiGpfbYiPaWxKYQLl3v93tfhERMaeRlDt7rqV8r8kcknBEtDeBcpdBRETMm81o8wWASTgi2nsY4IknnmL27KxzamfMmGV5/PEZgx3GkNV0/4zau3zlyfQTmvqKjmbl/dPZcO2bESO6WGGFZaD+/ewtCUdEe7MAZs/uTsLRh/RN3xrtn0ceab6Nhg3n2Js2zPum7TR0Fo1GRERE45JwREREROOScERERETjknBERERE45JwRERERONyl0pEH8aMWXawQxjSxo4dNdghDGmN9s/iI5tvo2HDOfb+ePa5mUyflh8L7pGEI6IPex12IY8+kT8YMfRMuvMxAA4+4KxBjiQ6OeeYHZg+2EEMIZlSiYiIiMYl4YiIiIjGDVjCIWmipOs6lI2T9NhAtTWXOO6RtE6HsvMkva4+niJpuwUQzzhJe/c3xgUQz7/6oOF2filpQoeyyZI+Ux//t6QPNRRDt6Rl6+MpksY30U5ERMzdIrWGw/a2g9DsOGBv4IRBaPsl5qcPJC1me+Y8HL8JsIzta/sRz1fmNZ75dCzwNWD3BdReRES0mOeEQ9K7gW9SfoZ2KrCP7b+1Oe7TwH6UH3GZ0rL/VcBpwEp110W295O0B7Az8E/gTcCDwGeBo4C1KD93+1Hb3ZJWAn4IvA7oAo6yfUpL87tI2hRYGTjW9nG17XuA7Wzf1ivW5YBv13aXAi4F9rf9ku+Dl7Qn8Pm6+TywHbA2cLTtN9djJrZsfx8YL+km4G+2d+xV3wHAhymvxbPAp2zfJOkVwMnAG4EXANveSZKAycArKK/BZNtHt4nzrbXvepaBf9H2ha19IOk1wPeA1YClgZ/ZntTSVycC7wDuknQI8DNgudpH59r+Uu92q70pr3FPLKsApwArAnfT8r6TNBm4zvZxkpYADge2AJYAbq39MaOOEu1H+cnjEcBOtu+o/XFsrXsJyuvd7teszgVOkDTKdtZxRUQsYPOUcNRk4VRgC9u3S9oL+F9gk17HvQk4BNjA9t8l/aCleBfgXttb12NXaCmbAKxr+wFJv6FctLYAngJuALYCLgK+C9xm+9/rRfMGSTe0JBIr2d68JiY3Srrc9i19PLVvA5fZ/rikEfU57Qn8qNfzmggcDLzd9iN1uH5un/w/TUsy0sYpto+p9W9NSaTeAmwDrGD7Db36aV/gPNvf6LW/Nc5XAr8CPmD7D5JGUhKFl7QNfMP25fVif7Gka23/rpa/xvaWtc6lgPfVi//iwG8lvdv2BW3qnUhJdnp8F7jc9tclrQHcDLQ770vAk7Y3rm0eCXyZ8l46CljH9v2SlgRGSlqM8h7ZpSYfo4DrJF1l+47Wim2/IOk2YNMObUdEDLj5vfV3YbxleF5HODYBbrZ9e90+CfhB/UPfaiLlE/Df6/YJwE718dXA/pKOAi4Dftty3u9tP1Af3wjcY/tJAEk3A2tSEo6tgQMAbD8s6VxgS6An4Tixlv29lk0E+ko4tgc2rqMNUEYPHmhz3HspCcIjtf4ZNbY+qp6rjSQdDLwSmA38W91/M/B6Sd+njBCdW/dfDhxdE4RL63+9vRW43fYfapyzgCdaD5C0DKVfxrbEP4oyWtOTcLSOGo0EjpL0Nsqo0quB9Wl/8V4V+HvL9pbA52osd0m6uM05UF6H5ST1jAItSekHgEuAkySdRXlv3SXpDTXe01uew5J13xwJR/VIjS0iYoGYOnXeB1THjh01X+cNthEjuvr87qJ5TTi6gP78Zm5XpwLbV0laH3gnsCtwEPD2Wvxsy6Gz2my3xts7jk5x9SfmLuD9tu/qx3HtzGTOBbhLzaUeAGrS8Atgc9s3SFqZMpXUc2FemzKq8x5gkqR1bZ8p6SrgXZS+2xP4aD/jbDWC0i8TbL/Q4ZgZLY/3B1YANrH9rKQT+niez/RR1pcuYF/bl7Qp+wBlBOwdwKWSPgncBzxme/1+1r9UjS0iIhaweb1L5SpgfUmvr9u7Aze2mRO/FNi2TsEA7NVTUO8UmGb7dMpFbKM6jTEvLqKsE0DSq4FtmfOT/h61bCzlYj1lLvWdDRxUpx6QtGKHOxrOAXarUzVIWrYO798NrCFpBUldwEdazpkGjO7Q7lKUJOr+ur1vT4GkVYFZtn9NWbswFnilpDWBR2xPBr4ObNym3j8Ab6jrOJA0svfUS33NrqAkLT1tvrb2ZzvLAw/XZGMVYIcOx0FZe9E67HMJ8LHaxnhKEtXO2ZTRr6XrsaMkrV2nTtawfY3tI4ALgQ0AA09L2rXlOby+rslpZ21eHDGJiIgFaJ4u9LanUkYlTpN0C+WTde9P19T1EpOA30u6gvqpvZpIWVdxE3A+8Enbs+cx7s8B69UYfgccZPtPLeX31XavAr5p+9a51PcFygjKzZJupUwTrNLmeV1GWTB7UZ3iuQRY3vaDwDHA9ZRk6OGW024BLOk2Sb/oVd804CvAtZIup6xV6bEucFVt55r6PB6iTE3dKulGyoLPz9OL7X9QRgS+XfvoemCjNs97F0picmt93j+nJBbtfBfYtLb7P0CnaRGAX1LWoPT4PLBlfS5H8uKUTW9HUBKCa2vcV1KShJHA5BrnzcBrgOPrnTPvAz4s6RZJfwJ+QFk8OgdJqwP0XjAcERELRld3d39mSCL6r44wXEmZfhkSUxiSvkm5S+jEfp4yDrg7X20eQ9WkMw4B4OCdDh/kSKKTc47ZYVFdwzEeuOcl5Qs6oFj41ZGbAyhvuqHiIcoi54iIGASL1Bd/xYLTcmvtkGD7e4MdQ0TEoixTKhHtjaMsBo4YmiZOLP9OmTKYUUQf5vfn6RfWKZWMcET04fHHZzB7dpLydobrH8UFpen+Gf1C+SLkJ4fpa5D3z6InazgiIiKicUk4IiIionFJOCIiIqJxSTgiIiKicUk4IiIionFJOCIiIqJxSTgiIiKicUk4IiIionFJOCIiIqJxSTgiIiKicUk4IiIionFJOCIiIqJxSTgiIiKicUk4IiIionH5efqIPowZs+xghzCkjR07arBDGNIa7Z/FRzbfRsN6x/7sczOZPu2ZQYommpaEI6IPex12IY8+kT+AMfRMuvMxAA4+4KxBjmTgnHPMDkwf7CCiMZlSiYiIiMYl4YiIiIjGJeGIuZI0RdJ2DdZ/j6R16uPzJL2ugTYmSrpuoOuNiIj+yRqOGFJsbzvYMURExMBLwrEIkXQo8Erb+9XtMcBfgNWALuB7wIR6+Km2j+x1/mrANcBrbb9Q950JnG37ZEm7AV8EuoE7gX1sP9omjs2AHwDPAFfXtnvK7gG2s32bpNfUmFYDlgZ+ZnuSpBHAccA7gOeAGbY3redvCxwCLAU8D+xn++r577WIiBgISTgWLScDf5T0RdszgZ2Bs2w/JelIyhTbusAo4CpJt9g+v+dk2/dJ+hPwHuDsmrBsAexWp0SOADay/bCkb1CShQ+1BiBpSeB0YBfbUyTtBHy2Q7ynAN+wfbmkJYCLJV0LPAZsDbze9mxJK9S6XwccCmxje5qkNwLnUxKWiBgGhvNtvgNpYeyHJByLkJow3A5sC5wN7AF8oRZvDXzedjcwTdLP6r7ze1UzuZ53NnMmLFsC59l+uB53PHBzmzAEPG17So3pDEknvOQgaRlgIjBWUs/uUcDalMRpJHCipEuA39TybYDXAZe3nLOYpJX66JaIGEKmTs2NsWPHjhqW/TBiRFef312UhGPRMxnYXdJdwGjbV9T9XZSpkFa9twHOBL5TRzf24MWEpb/nd7XZ186Iev6EnumbVnX0YiKwFXCkpA1r3RfY3q3N8Wv3s92IiGhA7lJZ9JwJbA4cSEk+evwO+LikLkmjgA8DF/U+2fbTwFnAJGC5loTlYmBbSa+u259odz5wB7C0pM0BJO0IjG7TznTgCuCgnn2SXivp1ZLGAkvbvqCWPwmsAVwIvLsmIz3nTCAiIgZdRjgWMbaflnQW8DFgfEvRNygLMW+t26fWC3o7J1GSgUNb6v2TpC8Dv5PUDdwF7NOm/eckfQT4gaRngEuA+zq0swtlNKUnpunAnsArgB9JWozyHj4fuLqu5/goZaplaWAJ4PfAtZ17JCIiFoSu7u52o94Ri7xxwN35avMYqiadcQgAB+90+CBHMnDOOWaHYbl2YaAtBGs4xgP3vKR8QQcUERERi54kHBEREdG4TKlEtDcOuHuwg4joaOLE8u+UKYMZxYDKz9MXC+uUShaNRvTh8cdnMHt2kvJ2husfxQWl6f4Z/cIsAJ4cpq9B3j+LnkypREREROOScERERETjknBERERE45JwREREROOScERERETjknBERERE45JwREREROOScERERETjknBERERE45JwREREROOScERERETjknBERERE45JwREREROOScERERETj8vP0EX0YM2bZwQ5hSBs7dtRghzCkNdo/i49svo1+ePa5mUyf9sygxhDDQxKOiD7sddiFPPpE/pjG0DPpzscAOPiAswY1jnOO2YHpgxpBDBeZUomIiIjGJeGIiIiIxmVKpSGS3g88ZPuaDuWTga2Bx+qu/7N9eC17BXASsBEwEzjQ9m/mdl4/45oILGH7wnl7RnPEfZ3t4+bn/A517gFsZ3tHSdsDm9n+4kDV39LOFODonr6MiIgFJwlHc94PXAe0TTiqIzpcuA8EptteU9JawBWS1rQ9Yy7n9cdEYFlgnhMOSSPns81+s302cHbT7URExII1LBMOSd3A14F3AWOAg22fWcs2AY4AlquHf8X2ufWT/dG231yP6719OPAh4HFgCrBVS9nuwL6U/noS+JRt1wvwkcC7a1sXAP9JGYHYHtha0seBb9s+ZR6e4oeA3QFs/1XSdcB7gP+bS798FfgI8CzQDWxp+58t5esCnwRGSNoaOB24ulO/1MfHAlcAE4DDalXrSboIeC1wOfBp289LWgn4IfA6oAs4qt3zlrQE8D1K8vMgcEdL2R7U0Y663anv3wYcR5kWXBw4zPbPJC0HfBt4E7AUcCmwv+1ZffVdREQ0aziv4Zht+22UC/sJkl4laXnKBW9n2xsB2wHH1/0dSXpfPXY94K3AWi1lmwE7AZvXOo8CflKL9wbWBzas/20A7G37t5RP6UfYXr+PZGN/SbdK+rWktVv2rwbc27J9H+Xi3vE8SStQRkY2sL0+sDkwo+UcbN9a++eUGtcRffVLtS5wmu23tExFbEIZwXkjsHrtB4DvArfZfhMlGTxS0jpt6twHGA+sQ+n3jds1PJe+/0/gO/W5rgOcX/d/G7jM9saU1+ZVwJ79eJ4REdGgYTnCUZ0IUD/t3gC8hbLeYTxwvqSe47qBNedS15bAGbafApB0MnBoLXsfJRH5Y62zC1ihlm0NTLb9fD3vJODfgf/pR/yHAA/bni1pN+ACSWv045N42/OAaYCBn0q6APiN7YG4W+2vtq/qte/nPdM7ta8+SBlt2Bo4AMD2w5LOpfTtbb3O3xI42fYLwAuSfgq8vU3bffX9pcCXJa0O/M72H+v+7YGNJR1Qt18BPDDvTzsi+mt+vwtksL9DZChbGPtmOCccrbooiUUXcIvtzXsfIOntzDmis1Sb8zvV/RPbX+mj3Vad6pmD7QdbHp8i6TvAqpSRjfsoIwdT6yGrUS6wHc+zfa+ktwCbAu8Arpf0btu3zCWUmXTuF+g1StJG7z7oT390zaXO1uPa9r3tYyWdQ0lyvifpQtv/Vc95v+27+tlGRLxMU6fO+2ebsWNHzdd5i4Lh2jcjRnT1+WWJw3lK5WMAdVHl+sAfgT8Aa0nasucgSRMkdQF3A2tIWqFuf6SlrkuB/5D0CkkjgF1bys4BdpO0aq1vpKSNatnvgD0kLS5pccq6i4tq2TRgdKfgJa3S8ngbYBZlPQOUtRr7tDy/CZT1IR3PkzQKGGv7MttfpYwqtJvO6B1XX/3SyX9IWkbSYsBHqclQfe5719heDWzbUtbqYmBXSYtJWhrYuUM7Hfte0r/ZvtP28cD/48VpmbOBg3oWuEpaUdL4fjyniIho0HAe4XhO0u+BFYF9bD8KUG+rPErSscASwF3A+2w/KOkY4HrKRfZayhoEbJ9dFyHeTLnoX00durd9uaRDgLPrRWwJSkJwPXACZbrmxhrTb4Ef1cenApMl/QftF42eXBdZzqYkAdvbnlnLjqrn/o2SUOzdMj3S9jxJo4Ez6wV8BHAD8Ms2/fYrysX+JuB020d06pc+XA78mjLycnntB4DPUdbM3EIZaTjI9p/anH8CZVHnnyjTHZdRpsLmMJe+/1xNLJ8HngM+W0/7AvAt4Oa6uPi5uu/uuTyniIhoUFd3d79mAIaUeiEZ1XKb6EDUOcr29DrC8WPKd2j810DVH8POOODufLV5DFWTzjgEgIN36vfX8DTinGN2yJTKABuufdMypTIeuKd3+XAe4Rhop0gaByxN+QT9rcENJyIiYuExLBMO2/1ddDgvdf77QNcZERERxbCcUolYAMaRdR8xlE2cWP6dMmUwo5jvn6cfrtMGC8Jw7ZtMqUS8DI8/PoPZs5OUtzNc/yguKE33z+gXylf2PJnXIIaJ4XxbbERERAwTSTgiIiKicUk4IiIionFJOCIiIqJxSTgiIiKicUk4IiIionFJOCIiIqJxSTgiIiKicUk4IiIionFJOCIiIqJxSTgiIiKicUk4IiIionFJOCIiIqJxSTgiIiKicfl5+og+jBmz7GCHMKSNHTtqsEMY0hrtn8VHNt9Gw4Zj7M8+N5Pp054Z7DCGpSQcEX3Y67ALefSJ/HGJoWfSnY8BcPABZw1yJIuWc47ZgemDHcQwlSmViIiIaFwSjoiIiGhcplSGIEl7ANvZ3lHS9sBmtr/Y5rjJwNbAY3XX/9k+vJa9AjgJ2AiYCRxo+zcvp2we4l8f+LrtHdqUjQOus72ipJWB/7W95bzU388YvgYsa/tASdsCO9jeZ6DbiYiI/skIxxBn++x2yUaLI2yvX/87vGX/gcB022sC7wN+LGnZl1nWX98EjpjbQbYfaiLZaNPOecCbJb2u6bYiIqK9jHAMMEn/CwhYEvgbsKftJ1pHLepx/9qWtATwPWAi8CBwR0t9c5w3Dz4E7A5g+6+SrgPeA/zf/JZJ+irwEeBZoBvY0vY/ez3/1QDZvqpl36eB/YCHgSkt+8dRRzvq9iaURGW5eshXbJ8r6VXAacBKdf9Ftver53wJ2JHyXn4Q+ITtR9r0xxnAnsAh/eu+iIgYSBnhGHift/1m2+sCfwL+sx/n7AOMB9YBtgM2nof29pd0q6RfS1q7Zf9qwL0t2/cBr53fMkkrUEY/NrC9PrA5MKNNPFsA1/RsSHoT5SK/qe3NgDHtnoSk5YEfAjvb3ojSD8fX/bsA99pet/brf9dzPgqsCbzF9obAecAx7eoHrgK26lAWERENywjHwNtN0i7AEsAywF/6cc6WwMm2XwBekPRT4O39OO8Q4GHbsyXtBlwgaQ3bs+Y3+D5MAwz8VNIFwG9st7s7bFXg7y3bE4FzbffsOwHYqc15b6MkXedL6tnXTUkorqYkVkcBlwG/reXbA28GbqjnLAY82SH+R2psEREvy4L4/pDh+B0lc5OEYwBJ2gz4FPA221Ml7QzsXYtnMueI0lItj7vmpz3bD7Y8PkXSdygX1XspIxOrA1PrIasBl9bH81xme5aktwCbAu8Arpf0btu39Arrmfl8bl3ALbY3b1dYF6K+E9gVOIiSkHUBh9n+ST/qX6rGFhHxskyd2uw3cYwdO6rxNpowYkRXn1+WmCmVgbU85RP245KWpKwZ6HEn8CZJS9Y1G61rMi4GdpW0mKSlgZ3705ikVVoebwPMoqxjgLIeY59athYwAbhgfsskjQLG2r7M9leB2yhTQL3dSlnD0uNSYNu6DgNgrw5P5w/AWpL+tYhU0gRJXZLGA9Nsnw7sD2wkaQRwNrBvne6h9u16HepfG7i5Q1lERDQsIxwD63zgo5RFnw8A11HXY9i+StJFlAv13cCfgdfU804A3kRZ8/EAZdpgfD/aO1nSSsBsypTH9rZn1rKjgMmS/kZJRPZumQKZ5zJJqwJn1oRoBHAD8Ms2MV0JjJc02vaTtm+RNAn4vaRHgHPbPZG6sHZ74ChJx1KmpO6i3CkzEThAUs8o0SdtzwZOlbQicFmdUhkB/ID2icU2wJl99GVERDSoq7u7e7BjiIWMpC8Dz9r+zmDHAiBpDHAJMMH28/08bRxwd77aPIaqSWeUG64O3unwuRwZA+mcY3bIlEoHLVMq44F7XlK+oAOKRcK3GVrrJdYAPjUPyUZERAywTKnEgLP9HOUW1yHB9rWDHUNExKIuUyoR7Y2jrLWJGJomTiz/TpkymFEschbEz9MvrFMqGeGI6MPjj89g9uwk5e0M1z+KC0rT/TP6hfJ1O08O09cg759FT9ZwREREROOScERERETjknBERERE45JwREREROOScERERETjknBERERE45JwREREROOScERERETjknBERERE45JwREREROOScERERETjknBERERE45JwREREROOScERERETj8vP0EX0YM2bZwQ5hSBs7dtRghzCkNdo/i49svo2GDefYm9Z03zz73EymT3um0TZ6S8IR0Ye9DruQR59YsP9TRvTHpDsfA+DgA84a5EhiODrnmB2YvoDbzJRKRERENC4JR0RERDQuCccwJqlb0nwtMpD0NUlHD3RMte71JbUd55U0TtJj9fHKki5tKIZ/PT9J20o6vol2IiKif5JwxHyT1GkN0DeBI+Z2vu2HbG85sFG1bec84M2SXtd0WxER0V4WjTZI0qHAK23vV7fHAH8BVqv/bmD7UUnnAd223yvpVcCNtldpU98HgEnAP4DzepX9LyBgSeBvwJ62n5AkYDLwCmAkMNl2z8jGKrXtNYA7gf+w/bSkJYDDgS2AJYBbgU/ZniFpMjAdWAsYC2zUK47VANm+qmXfp4H9gIeBKS37xwHX2V6xbm9CSVSWq4d8xfa5tU9OA1aq+y9q6dMvATtS3ssPAp+w/UjvvgPOAPYEDmlTFhERDcsIR7NOBj7cMhKwM3CW7aeAS4F3SFocGAesUR9vBVzSu6J60f0RsIPttwHP9zrk87bfbHtd4E/Af9b9+wLn2V7P9jrAiS3nvLnGtDawOLBL3f8l4EnbG9teH3gI+HLLeW8FPmh7jmSj2gK4piXuN1Eu8pva3gwY0+YcJC0P/BDYuda7HXB83b8LcK/tdevz++96zkeBNYG32N6QkoQd065+4CpK30ZExCDICEeDbN8n6XZgW+BsYA/gC7X4EmBryqfyPwJdwCZ138VtqnsLcINt1+0TgCNbyneTtAtlRGIZyggKwOXA0XXU4tL6X4/f2v4ngKQ/Aj1TDtsDy0nasW4vCdzcct4vatLUzqrA31u2JwLn2u7ZdwKwU5vz3gaMB84vgzIAdFMSiquB/SUdBVwG/LYlzjcDN9RzFgOe7BDXIzW2iIhgwX8PShKO5k0Gdpd0FzDa9hV1/8XAocAD9XEX5RP4VsDX29TT1akBSZsBnwLeZnuqpJ2BvQFsnynpKuBdwEGUaYWP1lOfbalmFrB0S1v72n7JSEs1o+OzhWeApfoTdy9dwC22N29XKGl94J3ArpTn8fZ6zmG2f9KP+peqsUVEBDB16sB+E8eIEV19flliplSadyawOXAgJfkAwPa9lIv87pSE4yLKCMgLtu9rU89VwAaS1qrbH28pW57yyf5xSUtSkgoAJK0JPGJ7MiWR2bgfMZ9NGVFYutYxStLa/TgPynoPtWxfCmxbp4QA9upw3h+AtST9axGppAmSuiSNB6bZPh3YH9hI0oga576SVqjHLylpvQ71r82cozQREbEAJeFomO2ngbMon8xP6VV8MfC07YdtP0z5BN52VMH2o5RRi3Mk/QGY2VJ8PmXR5x318Q0tZTsBt0q6Efge8Pl+hH0E5eJ8raRbgCspF+z+uBIYL2l0jfsWykLX30u6gjKF1O75PUGZIvmqpJsl/Rn4GmUUYyJwo6Sb6vP7pO3Ztk8F/he4rMZ5PbBph7i2oSR/ERExCLq6u7sHO4ZYyEj6MvCs7e8Mdizwr7uDLgEm2O692LaTccDd+WrzGKomnVFuuDp4p8MHOZIYjs45Zocmp1TGA/e8pHxAW4sovs3QWi+xBuW23v4mGxERMcCyaDQGnO3nKLe4Dgm2rx3sGCIiFnWZUolobxxw92AHEdHRxInl3ylTBjOKGKaa+Hn6uU2pZIQjog+PPz6D2bOTlLczduyoAZ8DXpg03T+jX5gFwJPD9DXI+6ezhbVvsoYjIiIiGpeEIyIiIhqXhCMiIiIal4QjIiIiGpeEIyIiIhqXhCMiIiIal4QjIiIiGpeEIyIiIhqXhCMiIiIal4QjIiIiGpeEIyIiIhqXhCMiIiIal4QjIiIiGpeEIyIiIhqXn6eP6MOYMcsOdghD2tixowY7hCGt0f5ZfGTzbTRsOMfetMHqm2efm8n0ac80UncSjog+7HXYhTz6RDP/80W8HJPufAyAgw84a5AjiYXJOcfswPSG6s6USkRERDQuCUdEREQ0LglHRERENC4Jx0JC0mRJn5mPsv+W9KH6eKKkdw1QPL+UNGFu8bS2P9AkdUtatj6eIml8E+1ERMTcZdHoMCFpMdszB7pe219p2ZwILAtc+HLqlLQJsIzta+ex/SYdC3wN2H0BtRcRES2ScAwgSYcCr7S9X90eA/wFWK3+u4HtRyWdB3Tbfq+kVwE32l6lTX3dwJeA9wJXSDoD+AGwDLAUcILtY1tOWU/SRcBrgcuBT9t+vq8ySZOB64DLgE8CIyRtDZxu+4he8YwGvgNMAGYDV9huN3KyN3Bay3mrAKcAKwJ30/K+62nf9nGSlgAOB7YAlgBuBT5le4akvYH9gOcoI3M72b5DkijJxIr1nGNtn9QmpnOBEySNst3UIuyIiOggUyoD62Tgw5J6Lqg7A2fZfgq4FHiHpMWBccAa9fFWwCV91DnC9kTbhwL3AFvb3hDYGNhb0totx24CvB94I7A65cLfnzJs3wr8EDjF9vq9k43qWOApYD3b61FGDNqZCPyxZfu7wOX1nP0pCUU7XwKetL2x7fWBh4Av17KjgHfV/ROA+2o/nwbsZ3sC8HbgIEmv712x7ReA24BNO7QdERGU7wCZn//m9r1FGeEYQLbvk3Q7sC1wNrAH8IVafAmwNfAg5WLcRUkCtgYu7qPak1sevwL4H0nrUUYYVgbWA/5cy39uewaApJOBDwLH9aOsv7YDNrI9uz7fxzoctyrw95btLYHP1XPuktTp+W4PLCdpx7q9JHBzfXwJcJKks4Bzaz1vANYGTi8DHf86Z23gjjb1P1Jji4iIDqZOnb9B4BEjuvpMOpJwDLzJwO6S7gJG276i7r8YOBR4oD7uooxubAV8vY/6ZrQ8nkS5aO5he6akCylTK+10Ad3zUTYQnqFzXH3pAva13W7E5wOUkY13AJdK+iRwH/BYHfXoj6VqbBERsYBlSmXgnQlsDhxIST4AsH0vMIuyaPFi4CLKCMgLtu/rZ93LA/fXZGMdYLNe5f8haZk61fBRyjROf8p6TANG99H+b4AvSuoCkLRih+NuBdSyfQnwsXrOeEqS1c7ZwP6Slq7HjpK0do15DdvX1KmeC4ENAANPS9q1pwJJr5e0XIf61+bFEZOIiFiAknAMMNtPA2cBu1IWSra6GHja9sO2H6Z82u5r/UZvhwGfkHQt8F+UxZ+tLgd+DfwJuB84oZ9lPX4FvFnSTZIOalO+HzAKuE3SzUCnO0x+CWzTsv15YMt6zpHA7zqcdwQlIbhW0i3AlZQkYSQwWdKttY7XAMfXu3beR1k3c4ukP1EW1S7Ru2JJqwPYvq1D2xER0aCu7u4mR9ZjUVRHGK4ENrE9JKYwJH0T+JvtE/t5yjjg7vyWSgxVk844BICDdzp8kCOJhck5x+wwEGs4xlNucpiz/GVFFtGG7WnAAZQ33VDxENDudtmIiFgAMsIR0d44yneGRAxNEyeWf6dMGcwoYiHzcn6efm4jHLlLJaIPjz8+g9mzk5S3M3bsqPkeel0UNN0/o1+YBcCTw/Q1yPuns4W1bzKlEhEREY1LwhERERGNS8IRERERjUvCEREREY1LwhERERGNS8IRERERjUvCEREREY1LwhERERGNS8IRERERjUvCEREREY1LwhERERGNS8IRERERjUvCEREREY1LwhERERGNy8/TR/RhzJhlBzuEIW3s2FGDHcKQ1mj/LD6y+TYaNpxjb1pTffPsczOZPu2ZRuqemyQcEX3Y67ALefSJwfmfM6Ivk+58DICDDzhrkCOJ4eScY3Zg+iC1nSmViIiIaFwSjoiIiGhcIwmHpCmStquPJ0v6TBPtDAeSuiW1XQgwl7KbJC1dH39B0quajLO2M07S3k2306bdeyStUx+fJ+l1DbQxUdJ1A11vRET0T0Y4XiZJI5uo1/b6tnsWD3wBaDzhAMYBCzzhaGV7W9t3DmYMEREx8PpcNCrpUOCVtver22OAvwCrAV3A94AJ9fBTbR85l/q2BL4LfAR4AZgMvAIYCUy2fbSkB4ENbD8q6Tyg2/Z76yf8G22vImkr4DBgqfocDrd9em3jDcBJwDLATcCawGG2fyPpNTXm1YClgZ/ZnlTPuwc4BXgn8BrgaNvHtXkOewAfBqYCbwD2qvF8uMbyLPAp2ze1nHagpHcBY4CDbZ85tzJJ3cAo4PPAysAvJD0L7Gz79l4xvRU4qh4P8EXbF/bUYXtGrzpnAycDb6yvg23vBHwfGC/pJuBvtneUNKG+ZssATwGfs32tpHHAdcCPgHfX/twF+CSwCfAMsIPtR9r04WbAD+oxV1PeSz1l9wDb2b6t0+slaQRwHPAO4Dlghu1N6/nbAodQ3hvPA/vZvrp3DBERsWDNbYTjZODDknoSk52Bs2w/BRxaz18XeBuwm6T3dKpI0i7At4B3274N2Bc4z/Z6ttcBTqyHXgq8Q9LilE/ca9THWwGX1GNuAN5uewNga+BoSSvUslOB79U6j+XFhAhKQvFd2xsDGwHvkfTOlvJX2H4rMBE4otN0B/B24Gu2N6qJxSm2J9R4DgV+2Ov42bbfBmwPnNBreqSvMmwfDjwE7FhHPXonG68EfgV8yfZ6wIbAtR3i7rENsILtN9Rz9qn7Pw3cXtvZUdISwJnAobbfBPwXcGbdDyVJurI+7xOBi4Hv12OvB14ylSZpSeB04LP1dbiSklC00+n1Wo/yuvfE3zN99zpK/7/H9kbAx4Ez5tIXERGxAPQ5wmH7Pkm3A9sCZwN7UIb3ofzB/7ztbmCapJ/Vfee3qepjlE+zW9meVvddTkkUlqAkGZfW/ZfUeh4E/kj59LtJ3XdxPWYs8BNJawEzgVcCqrGuA5xW479O0i2UwmUoicRYST1xjQLWBn5Xt0+v590j6QlgVeCONs/nyl7D/htJOrjGMRv4t17Hn1jrtaQbgLdQ+nNuZf3xVkqS8IdazyzgibmcczPweknfB6YA53Y4TsDzti+qdV8s6fm6fzplZKHn3BuAB1pGdq6njBa1q/Np21NqnWdIOuElB/X9ep1MGRU7UdIlwG9q+TbA64DLW85ZTNJKnToiImJRM1jff9Kf7+GYDOwu6S5gtO0r6v4uoLvXsb23e9wMbE6ZgrgawPaZkq4C3gUcBOwJfJSSVBwKPFAfd1FGN7YCvl7r+x/KRfkDtrsl/YUyhN4TU7s4RtT9E2y/0CHOZ1sez6Jz/8zoeVATpl8Am9u+QdLKlGSpk3b91p+yvurrZBZ1FEvSUj07bd8laW1Kn74HmCRp3XmIp2ffc73a6k//9RVvqz5fL0lvpCQkWwFHStqw1n2B7d3aHL92P9uNiFioTZ3azDdxjBjR1eeXJfZn0eiZlGThQEry0eN3wMcldUkaRVnDcFGHOm4A/h34qaQtACStCTxiezIlkdgYwPa9lIvV7pSE4yLKyMoLtu+r9S0P3FOTjXdS1mlg+0ngdsoaEepFaN1aNh24gpLcUMtfK+nV/eiDvvSsI7m/bu/b5piP1fbWAtanjNz0p6zHNGB0h/b/ALyhruNA0siW6aU7eXFKaeeeEyStCsyy/WtgP8qI0SvbtHMHsGRde9OzBmdxyjqe+XUHsLSkzWudO7Z7bn29XpLGAkvbvqCWPwmsAVwIvLsmIz3nTCAiIgbdXBMO208DZwG7UubUe3yD8onyVuAqyqLRC/qo51bKXPuPJW0D7ATcKulGysLAz7ccfjFl2P1h2w9TpmMuaSk/iDIdcxWwI3BLS9luwBckXU9ZwHgz5YIEZVHjGyTdKulW4OeU5GW+1SmirwDXSrqcsrCyt+ck/Z4y9L+P7Uf7Wdbju8BJ9VbZN/Rq/x/AB4Bv1+mj6ynrHaAkE8dLuoKSVPRYF7hK0s3ANcA3bT9E6UdLuk3SL2w/D3yQMgJyCzCJspbk+f72T2+2n6MkhN+XdA3wZuC+Dod3er1eC1xU47+FMo13te2/UkbJTpR0s6Q/8+L6lIiIGERd3d3zOoI/tNW5/6fr6McbKGsUZHtu6xoiWo0D7s5Xm8dQNemMQwA4eKfDBzmSGE7OOWaHBTGlMh64p3f5wvhbKpsCR0nqWSvwiSQbERERg2uhSzhsX0iZy4+IiIghIt80GhEREY1b6NZwRAyQccDdgx1EREcTJ5Z/p0wZzChimHn2uZlMn9bMurRFcQ1HxIB5/PEZzJ6dpLydsWNHNbb4bGHQdP+MfmEWAE8O09cg75/OFta+yZRKRERENC4JR0RERDQuCUdEREQ0LglHRERENC6LRiPaGwll1XV0lv7pW6P98+pXN99Gw4Zz7E0bjn3TEvPIduW5LTaivbdTfjwuIiLmzWbAlb13JuGIaG9Jyi/tPkz59eKIiOjbSOA1wLXAc70Lk3BERERE47JoNCIiIhqXhCMiIiIal4QjIiIiGpeEIyIiIhqXhCMiIiIal4QjIiIiGpeEIyIiIhqXrzaP6EXSvwEnA2OAx4HdbP91cKMaPJKOBj4IjAPWtX1b3b/I95OkMcCpwOsoX3T0N2Af21PTP4WkXwPjgdnADOCztm9K/8xJ0leBr1H/H1sY+ycjHBEv9UPg+7b/Dfg+cPwgxzPYfg1sDtzba3/6CbqBb9mW7TcBdwJH1LL0T7G77fVsbwAcDfyk7k//VJI2BN4C3Neye6HrnyQcES0kvQrYEPhZ3fUzYENJYwcvqsFl+0rb97fuSz8Vtv9he0rLrquB1dM/L7L9ZMvmaGB2+udFkpakJBT7UhLYhfb/ryQcEXN6LfCg7VkA9d+H6v54UfqpF0kjgE8BZ5P+mYOkH0u6Dzgc2J30T6v/Bn5q++6WfQtl/yThiIgYGN+jrFE4brADGWpsf9z2asDBwFGDHc9QIemtlB+J/MFgx7IgJOGImNP9wCqSRgLUf1eu++NF6acWdWHtWsCHbM8m/dOW7VOBLYEHSP8AbAG8Hrhb0j3AqsBvKYuQF7r+ScIR0cL2o8BNwEfqro8AN9qeOmhBDUHppxdJOhzYCHi/7ecg/dND0rKSXtuy/T7gH0D6B7B9hO2VbY+zPY6SiG1j+wwWwv7Jz9NH9CLp9ZTb0VYAnqDcjubBjWrwSPou8AHg1cBjwOO235h+AklvBG4D/gI8U3ffbfvf0z8gaSXgLGAZYBYl2TjQ9g3pn5eqoxzb1dtiF7r+ScIRERERjcuUSkRERDQuCUdEREQ0LglHRERENC4JR0RERDQuCUdEREQ0LglHRERENC4JR0RERDQuCUdEREQ07v8DFMUuAZBeD20AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "diesels.mpg.plot(kind='barh')\n", + "plt.yticks(np.arange(len(diesels)),diesels.car_name)\n", + "plt.axvline(merged.mpg.mean(),color='red')\n", + "plt.title('Diesel MPG (red line is average)');" + ] + }, + { + "cell_type": "markdown", + "id": "df9d8d17-46ec-4ce8-950e-aa1a24d98d7f", + "metadata": {}, + "source": [ + "# Interesting" + ] + }, + { + "cell_type": "code", + "execution_count": 11, "id": "0fb1ed64-bba6-463c-9a0f-84af360515b5", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:51.064733Z", - "iopub.status.busy": "2022-07-21T20:29:51.064060Z", - "iopub.status.idle": "2022-07-21T20:29:51.081301Z", - "shell.execute_reply": "2022-07-21T20:29:51.080572Z", - "shell.execute_reply.started": "2022-07-21T20:29:51.064704Z" + "iopub.execute_input": "2022-08-01T04:20:12.715450Z", + "iopub.status.busy": "2022-08-01T04:20:12.715284Z", + "iopub.status.idle": "2022-08-01T04:20:12.726019Z", + "shell.execute_reply": "2022-08-01T04:20:12.725441Z", + "shell.execute_reply.started": "2022-08-01T04:20:12.715435Z" }, "tags": [] }, @@ -728,7 +849,7 @@ " 0.324427\n", " 0.086899\n", " 43.666667\n", - " 134.596078\n", + " 1204.166667\n", " \n", " \n", "\n", @@ -741,11 +862,11 @@ " model_year origin car_name efficiency \\\n", "386 82 1 oldsmobile cutlass ciera (diesel) 0.324427 \n", "\n", - " load bore_size grunt \n", - "386 0.086899 43.666667 134.596078 " + " load bore_size grunt \n", + "386 0.086899 43.666667 1204.166667 " ] }, - "execution_count": 10, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -756,25 +877,39 @@ }, { "cell_type": "markdown", - "id": "0456df70-dc3d-4879-95cb-26e268fea9aa", + "id": "1e1ec508-df30-42c6-a63f-aea36c12d2e8", "metadata": {}, "source": [ - "This is an interesting engine. In fact, [these cars are rumored to be the reason why diesel cars are so unpopular in North America](https://www.autotrader.com/car-news/when-diesel-was-dreadful-oldsmobile-diesels-259997). [Here is a more technical write-up](https://www.dieselworldmag.com/diesel-engines/oldsmobile-350-v8)\n", - "\n", - "But that's a bit beside the point, the engines above and below for sake of conversation are basically the same, the V6 being the same as the V8 but with 2 less cylinders. So compare the stats between them as gas and diesel\n" + "This is an interesting engine. In fact, [these cars are rumored to be the reason why diesel cars are so unpopular in North America](https://www.autotrader.com/car-news/when-diesel-was-dreadful-oldsmobile-diesels-259997). [Here is a more technical write-up](https://www.dieselworldmag.com/diesel-engines/oldsmobile-350-v8)" + ] + }, + { + "cell_type": "markdown", + "id": "b9858dee-1de0-46ab-b46d-baa4cafc0efc", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "id": "d8625227-6fca-4e92-ba0c-271bbea53c23", + "metadata": {}, + "source": [ + "Big lazy engines in big heavy cars don't have to have poor MPG!" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "id": "c0c4f183-ef44-42ee-b64c-a75c63450d7b", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:51.083196Z", - "iopub.status.busy": "2022-07-21T20:29:51.082422Z", - "iopub.status.idle": "2022-07-21T20:29:51.103099Z", - "shell.execute_reply": "2022-07-21T20:29:51.102309Z", - "shell.execute_reply.started": "2022-07-21T20:29:51.083153Z" + "iopub.execute_input": "2022-08-01T04:20:12.727961Z", + "iopub.status.busy": "2022-08-01T04:20:12.727510Z", + "iopub.status.idle": "2022-08-01T04:20:12.755277Z", + "shell.execute_reply": "2022-08-01T04:20:12.754339Z", + "shell.execute_reply.started": "2022-08-01T04:20:12.727919Z" }, "tags": [] }, @@ -830,7 +965,7 @@ " 0.357143\n", " 0.089744\n", " 43.75\n", - " 122.500000\n", + " 1953.125\n", " \n", " \n", " 363\n", @@ -846,7 +981,7 @@ " 0.300000\n", " 0.093960\n", " 43.75\n", - " 145.833333\n", + " 1378.125\n", " \n", " \n", "\n", @@ -861,12 +996,12 @@ "298 79 1 cadillac eldorado 0.357143 0.089744 \n", "363 81 1 oldsmobile cutlass ls 0.300000 0.093960 \n", "\n", - " bore_size grunt \n", - "298 43.75 122.500000 \n", - "363 43.75 145.833333 " + " bore_size grunt \n", + "298 43.75 1953.125 \n", + "363 43.75 1378.125 " ] }, - "execution_count": 11, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -877,23 +1012,23 @@ }, { "cell_type": "markdown", - "id": "d8625227-6fca-4e92-ba0c-271bbea53c23", + "id": "2ccec1cb-db88-430c-a118-351da41a23c1", "metadata": {}, "source": [ - "Big lazy engines in big heavy cars don't have to have poor MPG!" + "But some still do" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "id": "8f51f87e-fb76-4c8a-b4bc-05f147fc8efa", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:51.104577Z", - "iopub.status.busy": "2022-07-21T20:29:51.104277Z", - "iopub.status.idle": "2022-07-21T20:29:51.120670Z", - "shell.execute_reply": "2022-07-21T20:29:51.119898Z", - "shell.execute_reply.started": "2022-07-21T20:29:51.104550Z" + "iopub.execute_input": "2022-08-01T04:20:12.756201Z", + "iopub.status.busy": "2022-08-01T04:20:12.756022Z", + "iopub.status.idle": "2022-08-01T04:20:12.770660Z", + "shell.execute_reply": "2022-08-01T04:20:12.769833Z", + "shell.execute_reply.started": "2022-08-01T04:20:12.756186Z" }, "tags": [] }, @@ -949,7 +1084,7 @@ " 0.494505\n", " 0.14744\n", " 56.875\n", - " 115.013889\n", + " 6328.125\n", " \n", " \n", "\n", @@ -962,11 +1097,11 @@ " model_year origin car_name efficiency load \\\n", "13 70 1 buick estate wagon (sw) 0.494505 0.14744 \n", "\n", - " bore_size grunt \n", - "13 56.875 115.013889 " + " bore_size grunt \n", + "13 56.875 6328.125 " ] }, - "execution_count": 12, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -985,15 +1120,15 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "id": "7d556866-da6d-48dd-b37a-e59c3155085d", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:51.122000Z", - "iopub.status.busy": "2022-07-21T20:29:51.121688Z", - "iopub.status.idle": "2022-07-21T20:29:51.127163Z", - "shell.execute_reply": "2022-07-21T20:29:51.126389Z", - "shell.execute_reply.started": "2022-07-21T20:29:51.121973Z" + "iopub.execute_input": "2022-08-01T04:20:12.772414Z", + "iopub.status.busy": "2022-08-01T04:20:12.771774Z", + "iopub.status.idle": "2022-08-01T04:20:12.776947Z", + "shell.execute_reply": "2022-08-01T04:20:12.776094Z", + "shell.execute_reply.started": "2022-08-01T04:20:12.772385Z" }, "tags": [] }, @@ -1005,23 +1140,396 @@ }, { "cell_type": "markdown", - "id": "15d5a2c5-cb01-4a54-8ce4-375018ebc79a", + "id": "146d6761-455a-407f-b627-24c13586a88f", "metadata": {}, "source": [ - "What vehicles have the lowest MPG?" + "## What vehicles have the Highest MPG?" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, + "id": "558d450a-2649-4005-bbe8-5f8cc509f965", + "metadata": { + "execution": { + "iopub.execute_input": "2022-08-01T04:20:12.778488Z", + "iopub.status.busy": "2022-08-01T04:20:12.778076Z", + "iopub.status.idle": "2022-08-01T04:20:12.930503Z", + "shell.execute_reply": "2022-08-01T04:20:12.929878Z", + "shell.execute_reply.started": "2022-08-01T04:20:12.778459Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAFBCAYAAABD12Q5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABOe0lEQVR4nO3deXxU1f3/8dckhH1NJCJr2PwoRAEVFVEEUVGrpXax1A1rW610s2r99otatRW6qP36s9r2S+vXrXWJ2lZRq1YgCgoKyCKKH5RFEEEhLEkgAULy++PexCFMFmAmM0nez8eDR+aec++5n3syOp+cc+6dSEVFBSIiIiKpIC3ZAYiIiIhUUmIiIiIiKUOJiYiIiKQMJSYiIiKSMpSYiIiISMpQYiIiIiIpQ4mJiEiCmNkbZjYsTm3lmFmFmbWooX6NmZ0Zvp5sZn+Nx3mrneM0M/N4t9sYmNnhZrbczFolO5amLuYbXEQkFjMrjtpsC+wC9obbV7v73+NwjouAa4GhwNvuPrpa/VDgAeBoYDnwHXdfXENbDwETgfHu/lxU+T3AT4Bvu/tDZnZF2GYJUA6sAm529+fD/TsAtwNfBboCBcDbwO/c/e0azn0BUOTuiw6oA+LA3acmqN3ZgCWi7VTn7p+Z2SzgKuAPyY6nKdOIiYjUm7u3r/wHrAUuiCo75KQktAW4B/hN9Qozawk8C/wN6AI8DDwbltdkBUFyUtlGC+AbwMpq+80Nr6szQZKSZ2aZ4V/IM4FjgPOBjgRJ0RPAebWc9/vAozVV1jTyIQfPzNITfIq/A1cn+BzNnv7DEJFDFn54/xa4KCzKA/7L3XeZ2WiCROKPwHVAMXBTTYmMu78atvndGNWjCf6/dY+7VwD3mtkNwBnASzWENx241My6uPtW4BxgKdChhvOXm9n/AfcC/QhGbnoCo919R7jbDuDp8N9+wkTpDKI+xMzsNiAXKAW+DFxnZk8BvydIcMqBB4Fb3X1v+CH7W+AKoBC4u4bri3X+24AB7n6pmeUAq8N2fkUw0vU/7j4l3DcNuBH4HkFSNgP4vrtvidHuaOBv7t4z3P4v4McEydqnwCR3nxHjuC8BdwD9ge3AA+5+W1j3EvC8u98Xtf8S4HZ3/4eZHUUwQnE8sAm4xd3zwv0eIhjl6gOcDowP34sxzxUec3nYD+0JEuDvAN9191fr0RdvAf3MrI+7fxy79+VQacREROLhJuBkgg/xIcCJwM1R9d2Aw4AeBKMX08zsYKYEBgNLw6Sk0tKwvCalwHPAhHD7cuCRmnYORzK+S5BAfQicCbwclZTUx0Cg3N0/qVY+niCZ6Uzw1/fDQBkwABgGnB2eG4IPx/PD8hOArx/A+WM5lWAaZizwCzM7Oiz/MfAVgg/27sBW4P66Ggt/fz8Ehrt7B2AcsKaG3XcQ9Htn4EvANWb2lbDuMeBbUe0OIkg0XjCzdsB/wn2yw/3+aGbRv++LgSkEieac2s4Vtv1H4BLgCKATwXuyUq194e5lwEcE73FJECUmIhIPlwC/dPfP3X0TwXqMy6rtc4u773L314AX+GJ05UC0J/grONp2ahj9iPIIcLmZdSL40PlXjH1ONrNtwEaCD8AL3X07QUK1sXInMxtqZtvMrLCWhaCdgaIY5XPd/V/uXk4wynAucK2773D3z4H/4YsE6iKCkaF14V/sv67jGutyu7uXuPsSYAlffLheTTCC9Ym77wJuA75ej6mmvUArYJCZZbj7GnevPj0GgLvnu/u77l7u7kuBxwl+DwD/BIaaWZ9w+xLgH2Es5wNr3P1Bdy9z93eAZ9g3SXvW3d8I2y6t41xfB6a7+xx33w38AohOcuvTF0UEv19JEE3liEg8dAeih7Y/Dssqba024lC9vr6KCT7Qo3UkdhJQxd3nmFlXglGc5929JMaAzTx3PzXG4QUEf11XtrUY6BzeAVPTnS9biZ0srYt63QfIADZExZIWtU/3avsf6tTBxqjXOwmSvMo4/mlm5VH1e4HDgfU1NebuH5nZtQQf3oPN7GXgOnf/tPq+ZnYSwZqhXKAlQULzVNhOkZm9QJCQ/Tb8eVVUbCeFCWOlFuy7die6j2o9F9X61N13mllB1OH16YsOQHQ8EmdKTEQkHj4l+J/6e+F277CsUhczaxeVnPQGlh3Eed4DrjezSNR0zrHUY+qBYJ3LL4AxB3jOGcDt1eKvy4dAxMx6uHv0h3v0X+frCO5qOiycIqhuA9Ararv3gQR9ANYBV7r7Gwd6oLs/BjxmZh2B/yVILKqPlEEwFXMfcK67l4Z3RR0WVf84cKuZvQ60AWZFxfaau59VSxgV1bZrO9cGou4qMrM2QFbUsbX2RThyMoBgxEkSRFM5IhIPjwM3m1lXMzuMIAH4W7V9bjezlmZ2GsEQ/VPVG4Hgzgoza03wh1OambU2s4ywOp/gL9gfm1krM/thWD6zHjHeC5wFvH4gF0YwDbSB4C/p3Kj4TqjpAHffA7zKF1MIsfbZALwC3G1mHc0szcz6m1nlMXkE19nTzLoAPz/AuOvrz8CUyqmU8Hc4vq6DLHBGuNi0lGAR6t4adu8AbAkThRMJ1oVEe5Egsf0l8GQ41QXwPHCkmV1mZhnhv+FR62MO9FxPAxeY2SnhAuXbgUhUfV19cSLB1JIWviaQEhMRiYc7gAUEC1HfBd4JyyptJJje+JRg0ef33f2DGtq6jOBD7k/AaeHrvwCE6wK+QrC4cRtwJfCVsLxW7r7F3WdUWzhbJ3cvJRhleZ9gbUwh4MBwal8n87/EHj2IdjnBdMP7BP3zNF9MG/0FeJngr/N3gH8cSNwH4P8RLA5+xcyKgHnASfU4rhXBlMlmgt9vNjC5hn0nAb8M2/8FQdJVJVzP8Q+ChcaPRZUXESwInkDw3tlIMCpT20POajyXu78H/IjgVu8NBFOAnxOMXEHdfXEJQfIiCRSpqDig/0ZFRA5I9VtMmxMzmwP8KBkPWZO6mVl7ggR3oLuvrmPfbOA1YFiYrEqCaI2JiEiC1LCYVpLIgifyziCYwrmLYIRvTV3HhXdN1TaFJHGiqRwREWlOxhNMC31K8LyZCQc6vSeJpakcERERSRkaMRGJrQWQg6Y7RUTqKy7/39T/dEVi60Pw6OnTgOqPFRcRkf31BGYTPOsl5lOA60OJiUhslbdszk5qFCIijc8RKDERibsNAFu37qC8XOuwALKy2lNQUJzsMFJGIvujw1XfBqBo2oMJaT9R9B7ZV3Prj7S0CF26tIPw/58HS4mJSGx7AcrLK5SYRFFf7Cth/bFxY2LbT6DGGHMiNdP+qOkJwPWixa8iIiKSMpSYiIiISMpQYiIiIiIpQ4mJiIiIpAwlJiIiIpIylJiIiIhIylBiIiIiIilDiYmIiIikDCUmIiIikjL05FeRWmRltU92CCmla9cOyQ4hpSSsPzLSE9t+AjXGmBOpsfVH6a4yigpLqrbLysrIy3uUbdu2kps7hFGjxrJrVymzZ89izZpVlJeX07VrNhde+M2Y7d1+++29gPuAM4Ey4Plbb731ktpiUGIiUovv3PEKn28tqXtHkTiaunIzAJOvfzbJkUhzM/3u8RRFbS9YMI/i4qJ99pk58xXWrFnJscceR5cumWzc+GnMtm6//fYI8E9gEPA7gu/QObquGJSYiIiIyH42b97EkiULOfHEU5g7N/ii9e3bt7F69UcMHHgUJ598KpFIhEGDjqmpiTHA8cAU4DfArltvvbXOLw/SGhMRERHZR0VFBfn5r5CbO5Ts7G5V5Vu3bgFg06bP+Mtf/sBf/vIH5s59vaZmBoU/vwbsBApvv/32H9d1biUmIiIiso/ly5dRVFSI2SB27CgGYPfu3ezZsweAPXv2cNZZX6Jbt+4sWrSAdes+jtVMq/DnHuBCYDVwz+23335kbedWYiIiIiL7KC4uoqSkhLy8R3n11X8DsGLFct57bwkARxzRg/79BzJggAFQWLgdCBbLbtq0KSNsZk3484Vbb731WeAFIAL0re3cWmMiIiIi+xgwwMjKOgyALVsKmD9/Lr1753DiiSOZOfNl1q9fy/vvL+WDD5YRiUTo1q07AFOmTCE9Pf35m2++2YAXgc+Br91+++0fAV8HioFFtZ1bIyaSVGaWb2bnx7G928zsrni1JyLSHGVmZtG//5H0738k3bv3BKBjx05kZx/O2WefR8eOnZk9exalpaWMHXtOVRIT7dZbby0hSEZ2AfcTrDP56q233vp5befWiImIiIjUqEePXkyadF3VdmbmYXzta9+Kue+tt94KMC5qezZQ4207sSgxkf2YWQVwM/AVIAv4HsHDcc4BMoBvuPtyM+sGPA50BFoDL7j7jWEbzwG9wyYzgQJ3H2Zmg4AHw3beD4+rPO/1wASC92UpcI27L44RXyfg/4DBwPrw3+fufkOMff8buBgoB3YAp7p7+cH2jYiIJJamcqQm29x9OPBfwLPAHHcfBjwC3FS5D3CBux8PDAVOMLNzANz9y+4+FDg93O+X4TGPAn909+MIngY4POqcj7j78PA8twB/riG2XwBb3f0o4BvAabF2MrOJwJeBke4+JIxVSYmISC26du1wUP/i9aRsjZhITZ4Mf74DVLj7C+H2QuCr4et04E4zO4VgpXU3ggTlJQAzywD+ATzo7v80s45ALkFygrvPM7N3o855vJlNJhhhKQdquqVsDPCjsI0tZvavGvY7H/iTuxeG+xbU79JFRJqvTZuK6t4phrS0SFySE42YSE1Kw597CRYuEbVdmdBeB3QBTnL3Y4F/ETU1A/wFeM/d/yeqLOZT/8ysJfA0cK275xJMG7WKtS9BElTn0wPD/UREpBFRYiKHojOwwd1LzawHML6ywsxuI0harq0sC0culhGs+cDMTuSLRVGtCRKedeH2pFrOOwuYGLbRJfq81UwHrjGzDuG+WfW+MhERSQolJnIo7gVGmtki4E/AjKi6W4GjgHfMbLGZVU4NXQ78yMzeIVhUOw+qkpZfAPPN7HWChao1+SWQbWbvAX8D3gC2x9jvEYLkZJ6ZLQGeNTO950VEUlikoqI+I+IiqSNcu5IejtR0BOYA17n7q3E8TQ6wWt8uLMkwNS9YXz75oilJjkSam+l3j4/HGpO+fPHU1wOmxa/SGHUB/m1m6QRTQI/FOSkREZEkUWIijY67f07wVdoiItLEaL5dREREUoYSExEREUkZWvwqElsOsDrZQUgzNXp08DM/P5lRSDNUuquMosKDW/Cvxa8iDaCgoJjyciXvEDym+mBX6zdFieyPTnv2ArC9kfW33iP7Un8cHE3liIiISMpQYiIiIiIpQ4mJiIiIpAytMRGpRby+xrup6Nq1Q7JDSCkJ64+M9MS2n0CNMeZESmZ/VF/IWlZWRl7eo2zbtpXc3CGMGjW21vLqioqKmD17Jp988jFpaWn06dOPs846L+5xKzERqYUeSS/JMHXlZgAmX/9skiORxmz63eOJXnq7YME8iov3X4xbU3m0iooKXnrpObZuLWDo0BNo1649W7cWxDnigKZyREREmrjNmzexZMlChg8fUa/y6tavX8emTZ8xZMjxHHfciQwadAynnjomIbFqxERERKQJq6ioID//FXJzh5Kd3a3O8lgqR0dWrvyQhQvfIiMjg5NOGsmxxx4X93g1YiIiItKELV++jKKiQswGsWNHMQC7d+9m0aL5MctLSnbu18bevcGzddLS0jj33C/ToUMn5szJZ9u2rXGPVyMmIiIiTVhxcRElJSXk5T1aVbZixXKOPjo3Znl6ejpjxpxNWVkZkUiE9PR0OnToCECfPn3p23cAGzduYMuWzRQWbqdz5y5xjVeJiYiISBM2YICRlXUYAFu2FDB//lx6987hqKMG07t3zn7lgwcPAWDatHvJzMxiwoSJ9OnTlzZt2rJq1Yd06tSZVas+JCMjg8MOy457vEpM4sTMKoAO7l6coPZHA3e5+wlxau9F4EfuvrKWfU4AfurulxxAu0OB+4FhwIvu/vWouiuAe/jiOxRWu/uFUfW3AFeEmw+5+6/qU3cAsSX0dyQikooyM7PIzMwCoHXrdQB07NiJI47oUbVPdHl29uH7tdGiRQbjxp3P66/PYPbsmXTu3IVzzvkybdu2jXu8SkyaKXev8+Zzd18A1DspCX0OXAcMBc6KUf9qdLJSycxGAd8AcsOit8zsNXd/vba6A4xNRKRZ69GjF5MmXVev8urb3bv3ZMKEiQmND5SYxNuPzexCIAv4mbs/A2Bm5wC/BtKBTcDV7v5ROApyD/AWMAKoACa4+/LwuDuACcB64O3Kk5hZN+BxoCPQGnjB3W+MFZCZjQDuBCqf8vMzd3/FzNYA5wNdgHvdfVjUMQsJkosIUaM0ZnY+cBuQAZQDE919afT53P1T4FMzO/pAOg74JvCIu5eE53okLHu9jrrq1/s1YApQAjwVvtYoiYhII6HEJL4K3X24mY0E8oBnzCwbeBQ43d3fN7PvAH8HTgqPGQx8292vNrObgJuBS8zsAuDLBCMPJcC/os6zDbjA3YvNLAN42czOcfeXooMxs0zgn8BX3f1NM0snSGaquPtsM2tvZse6+1IzywU6E3zonx7V1pHAX4HT3P1DM2sFtDyIPjrdzBYDhcBv3f2FsLw3kB+131pgVD3qoq83G5gGnBzG+NODiE9EpMlojE/iVWISX0+EP+cB3c2sNUECssTd3w/rHgT+aGaV7xZ390VRx10Qvh4DPFn5l76ZPUCQtEAw8nKnmZ1CMKrRjSCB2ScxIRiFed/d3wxPtBeIdW/XIwTrN64Dvk2whqPCzKL3OYtgzciHYVu7gF11dUg1z4fXVGJmw4CXzGx05QhRHJwMvFMZI/B/wO/j1LaISKOzaVPtT3SNp7S0SFy+xkPPMYmvUqhKACBI/CIEUzS1HhPayxfJYqSWY64jmII5yd2PJRhNaR1jv9raiPYw8K0wkfoWQaJysG3VyN03V07HhMnYHODEsHot0Cdq997AunrUVY+xtr4WEZEUp8Qk8eYCQ83sqHB7IrDI3etKY2cAF5lZu3AK5ttRdZ2BDe5eamY9gPE1tPEmMChcZ4KZpZvZfjecu/ta4H3gXoIRlo9jtPUycJ6ZDQzbahU16lMvYayVr/sQjHBUrlF5CrjczNqYWRvgcoLpsLrqos0DjjezAeH2FQcSn4iIJJ8SkwRz903AZcBjZrYUuDT8V9dxzxNMfSwGZgKLoqrvBUaa2SLgTwRJTKw2tgBfBX4fnnshcHwNp3wQ+B7wUA1tfRjWP2lmSwgSrpzq+5lZjpl9QjCFcp6ZfRKuqwH4gZm9Fx7/HDC5chrL3fOBfwDLgPeAf7j7a3XVVYvxM+D7wAtm9gbQBtgD7P8YQxERSUmRigqNfEvTYWYdKkejzOzbwHfc/dSDaCoHWK1vF5ZkmJp3EwCTL5qS5EikMZt+9/hkrTHpyxfPqzpgWvwqTc2PzewbBO/tLQSjPCIi0kgoMZEmxd2nEDy7REREGiGtMREREZGUocREREREUoYWv4rElgOsTnYQ0kyNHh38zM9PZhTSyJXuKqOosOEW72vxq0gDKCgoprxcyTsEj7ZuyBX+qS6R/dFpT/CMxu2NrL/1HtmX+uPgaCpHREREUoYSExEREUkZSkxEREQkZWiNiUgt4vFNmU1JY/wK9URKWH9kpCe2/QRqjDEnUjL6o6EXvcabEhORWuiR9JIMU1duBmDy9c8mORJpjKbfPZ7oJbdlZWXk5T3Ktm1byc0dwqhRY2stj1ZSspPnnnuG7du3EolE6No1m9NOG0tW1mEJi19TOSIiIk3YggXzKC7e/+6gmsqr6907h1GjxjJ48BA+/XQ9b7yx33eoxpUSExERkSZq8+ZNLFmykOHDR9SrvLo2bdpy0kkj6dOnLz179gIgEklYuICmckRERJqkiooK8vNfITd3KNnZ3eosr8mWLZvJy/sbAO3atefUU8ckLGbQiImIiEiTtHz5MoqKCjEbxI4dxQDs3r2bRYvmxywvKdkZs51OnTpz/vlf5cQTT2HHjmIWLZqf0Lg1YiIiItIEFRcXUVJSQl7eo1VlK1Ys5+ijc2OWp6enM2bM2ZSVlRGJREhPD+4Oy8hoSe/eOfTuncP777/LRx+t4IwzxiUsbiUmIiIiTdCAAVZ198yWLQXMnz+X3r1zOOqowfTunbNf+eDBQwCYNu1eMjOzmDBhIsuXL2Pz5k0cdlhXCgo2U1xcRHb24QmNW4lJE2FmDwEL3P2+A6z7JfCeuz9pZqOBlu7+Shzi+Qfwa3ffb8wvOp7o8x/qOWOcpwLo4O7FZpYPfNvd9cV8ItIsZGZmkZmZBUDr1usA6NixE0cc0aNqn+jyWAlHmzZtWbt2Ne+9t5SMjAz69OnHyJGnJzRuJSaNhJm1cPeyeLfr7r+I2hwNtAcOKTExs5OAdrGSkjrOn0j3ALcBExvofCIiKaNHj15MmnRdvcqjt3Ny+pGT0y/h8UVTYhJHZnYLkOnuPw23s4AVQO/w5zB3/9zMXgQq3P1LZpYNLHL3HjHaqwBuBL4EzDazPOCPQDugNTDN3e+JOmSImb0K9AJeB37g7rtrq6scvQBeA74PpJnZmcAT7v6bavF0Av4HGA6UA7Pd/YcxuuIq4LGo43oAjwCHAauJet9VGz1pCUwBTgdaAu8C14QjHlcBPwV2ESzavsjdPzAzI0g6DguPucfdH4wR0wvANDPr4O76uk8RadIa8xN4lZjE18PAW2b2s3B042LgWXffYWazgDPM7BkgB4iYWQYwFphZS5tp7j4awMw6AGe6+y4zaw+8bWYvu/vycN+TgFOAUuBFggThvnrU4e7vmtmfgfbufkMNsdwDFAND3L3czGp69N9o4M6o7XuB1939djPrBywBXopx3I3Adnc/Mbze3wL/DdwUtpfr7uvMrBWQbmYtCBKgS8IkpQOwwMzmuvsH0Q27+x4zWwaMrOHcIiJNxqZNDf/3V1paJC5f46HbhePI3dcC7wPnhUVXAJV/vc8EzgROBt4K/50Uls2opdmHo163BR4ws3eBN4DuwJCo+ifdvThMih4GzqhnXX2dD9zp7uUA7r65hv16Ap9FbY8B/hoes4qar/fLwKVmttjMFofb/cO6mcCDZvYjoIe77wSOBI4Gngj3nw20Csti2RjGJiIiKUojJvH3EDDRzFYBndx9dlg+A7gF+CR8HSEYLRkL3F5Le8VRr6cSfLhe4e5lZvYKwZROLBGg4iDq4qGEmuOqTQSY5O6xRpC+SjCFdAYwy8y+D6wFNrv70Hq23zqMTUREUpRGTOLvGWAUcANBkgKAu38M7CVYfDkDeJVgRGVPONJSH52BdWFSkgucVq3+G2bWLpziuBSYVc+6SoVAp1rO/zzwMzOLANQylfMuYFHbM4Fvh8f0JUjGYnkOuM7M2oT7djCzo8OY+7n72+G6l1eAYYADO83sssoGzOwoM+tYQ/tHE0wjiYhIilJiEmfhFMOzwGUECz6jzQB2uvsGd99A8Nd7betLqrsD+J6ZzQduJljEGu114F/Ae8A6YFo96yr9EzghnEr5eYz6nwIdgGVmtgSo6Y6afwDRT9/5CTAmPOa3wH9qOO43BInDfDNbCswhSCbSgYfM7N2wjSOA/w2npS4AJpjZUjN7j2BxcMvqDZtZHwB3X1bDuUVEJAVEKioSOaIvzVE4YjEHOMndU2LqxMx+DXzk7g/U85AcYPV37niFz7emxCVIMzI17yYAJl80JcmRSGM0/e7xyV782hdYc9DtxCsgkUruXghcT/DmTBWf8sVCZBERSVFa/CoJ4e41Tdckhbv/IdkxiIhI3TRiIiIiIilDa0xEYssheEqtSMMbPTr4mZ+fzCikkSrdVUZRYcOvjYvXGhNN5YjUoqCgmPJyJe8QPOI6GQvqUlUi+6PTnr0AbG9k/a33yL7UHwdHUzkiIiKSMpSYiIiISMpQYiIiIiIpQ2tMRGoRj2/KbEoa81epJ0LC+iMjPbHtJ1BjjDmRGrI/krXoNd6UmIjUQk9+lWSYujL44u7J1z+b5EikMZl+93iil9qWlZWRl/co27ZtJTd3CKNGja21vLpVqz7izTdfY8eOYg4//AjOOGMcHTvW9nVq8aGpHBERkSZowYJ5FBfvf1dQTeXRdu7cwX/+8wItW7ZixIhRbNr0GTNmvJSoUPehxERERKSJ2bx5E0uWLGT48BH1Kq/uww8/YO/evRx33Ikce+ww+vYdwIYN69m+fVsCow4oMREREWlCKioqyM9/hdzcoWRnd6uzPJbCwu0AtGsXrLNr377DPuWJpMRERESkCVm+fBlFRYWYDWLHjmIAdu/ezaJF82OWl5TsrLPNhnxKvBa/ioiINCHFxUWUlJSQl/doVdmKFcs5+ujcmOXp6emMGXM2ZWVlRCIR0tPTqxa57thRFP4MEpmGWPyqxESSzswWAyPcvcbbX8wsH7jL3Z9vqLhERBqjAQOMrKzDANiypYD58+fSu3cORx01mN69c/YrHzx4CADTpt1LZmYWEyZMZMAAY+7cOSxaNJ+dO3eyevVHHHFEDzp16pzw+JWYSNK5+9BkxyAi0lRkZmaRmZkFQOvW64BgpOOII3pU7RNdnp19+H5ttGvXnrPOOo+5c1/nzTdf5/DDu3HGGeMaIHolJlIDM7sFyHT3n4bbWcAKoHf4c5i7f25mLwIV7v4lM8sGFrl7jxjtVQC3A2cDWcBkd38mqq6Duxeb2dHA/wO6ARGCUZKHq7U1AbgeuBCYA5zv7svCujWV2+Hrx4GRQHfgHne/L26dJCKS4nr06MWkSdfVq7z6dv/+A+nff2BC44tFi1+lJg8DE8ysMnm9GHjW3XcAs4AzzCwDyAH6ha/HAjNrabPc3U8BvgxMCxOZKuG5ngX+4u7HuvsxwPPV9rkR+C5wprt/Uo/rONzdRxEkJ5PN7Nh6HCMiIkmiEROJyd3Xmtn7wHnAc8AVwLVh9UzgTGA98BbByMZJYdmMWpp9IGzbzewd4OSw7UoGtHD3p6LiKIiqvw1YC5zn7rvreSmV5/zMzF4ARgNL63msiEij0hS+EkCJidTmIWCima0COrn77LB8BnAL8En4OkIwWjKWYLqmPiJA9fvPInUcMw84C+gDfBiWlbHvyF/rAzyniEiTsWlT7U90TaS0tEhcvl9MUzlSm2eAUcANBEkKAO7+MbAXmEiQmLxKMKKyx93X1tLetwHMbCAwlGC0JdoHQJmZfaOyIFzbUukl4BrgRTMbHJatBIaH+44Fqq/iuiKs6wqcC+TXEp+IiCSZEhOpkbvvJFjzcRnwSLXqGcBOd9/g7huAEmpfXwKwy8zeIFg3crW7f17tfGXAeOD7ZvaumS0hmEqK3mcmQbLxnJkdB9wMXG9m88J9qydGa81sNjAX+LW7v1uPSxcRkSSJNOTT3KT5ir7zpgHPuYaoO3YOUA6wWt8uLMkwNe8mACZfNCXJkUhjMv3u8akyldMXWHPQ7cQrIBEREZFDpcWv0iDcva6FrYk4Z05Dn1NERA6NRkxEREQkZSgxERERkZShxERERERShu7KEYktB1id7CCkmRo9OviZn5/MKKSRKd1VRlFh8u4ijNddOVr8KlKLgoJiysuVvEPwqOtk3oqYahLZH5327AVgeyPrb71H9qX+ODiayhEREZGUocREREREUoYSExEREUkZWmMiUot4fFNmU9IUvlI9nhLWHxnpiW0/gRpjzImUyP6IXuxaVlZGXt6jbNu2ldzcIYwaNZann36MrVsLqKiooEuXLEaOPJ3u3XvW2F5JyU4ef/whSktLGTFiFMOGnZCw2GujxESkFvquHEmGqSs3AzD5+meTHImksul3j6dyae2CBfMoLt53oW23bt0ZPPhYdu7cydtvv8GsWa9wySVX1tjenDmzKCsrS2DE9aOpHBERkUZs8+ZNLFmykOHDR+xTPnLk6eTk9Kdnz16kp6cTidT8zSAff7yaNWtWMWzY8ESHWyeNmIiIiDRSFRUV5Oe/Qm7uULKzu+1Tt3v3Lh588E8AtGrVijFjzo7Zxp49u3nttVc5+eRTychomfCY66IRExERkUZq+fJlFBUVYjaIHTuKAdi9ezclJTvJyGjJBRd8jVNPHUNZWRlvv/1mzDbeeWc+LVpk0KtXDiUlOwEoLS2htLS0wa4jmkZMREREGqni4iJKSkrIy3u0qmzFiuWkp6czZszZ9OrVh169+rBq1QrWr19HSUkJbdq0oaysjEgkQnp6OsXFRWzbtoXHHnuwqo1Fi+aTkZHBCSec3ODXpMRERESkkRowwMjKOgyALVsKmD9/Lr1759CpU2dmznyZbt26U1xcxMaNG2jTpi2tW7cGYNq0e8nMzGLChIkcc8xQcnL6AbB+/TqWLVuC2SD69z8yKdekxKQRM7MKoIO7Fx/EsbcB7d39hgTENRS43d3Hx6jLARa4+2Fm1h34u7uPSUAMtxFen5mdB4x396vjfR4RkWTKzMwiMzMLgNat1wHQsWMnevTozYoVy/nwww9IT29Bt27dGTFiVMwFsNnZ3arWp+zZswdYQmbmYXTpktlg1xFNiYkcNDNr4e6x7i37NfDLuo5390+BuCclMc7zopn9ysz6u/vKRJ9PRCQZevToxaRJ11VtT5gwscZ9o/eLdtRRgznqqMFxj+1AKDFJIDO7Bch095+G21nACqB3+HOYu39uZi8CFe7+JTPLBha5e48Y7X0VmApsAV6sVvd3wIBWwEfAle6+1cwMeAhoC6QDD7n7XeFhPcJz9wNWAt9w951m1hKYApwOtATeBa5x92IzewgoAgYCXYHjq8XRGzB3nxtV9gPgp8AGID+qPIdw9CTcPgn4DdAx3OUX7v5C2CePAYeH5a9G9emNwNcJ3svrge+5+8bqfQfkAVcCN8WoExGRFKHEJLEeBt4ys5+FIwsXA8+6+w4zmwWcYWbPADlAxMwygLHAzOoNhR/OfwFOcXcPP5Cj/cTdN4f73gH8F/BzYBLworv/KqzrEnXMCcBwYDvwMnBJeI4bge3ufmJ4zG+B/+aLD/URwOnuviPGNZ8OvB0V97HhccPc/TMz+2OsjjKzzsCfgfPcfYOZHQHMN7PcMK6P3f3M6Gsws0uBAcDJ7l5uZtcAd4f7VzcX+B1KTESkCWmKT9pVYpJA7r7WzN4HzgOeA64Arg2rZwJnEvyV/xYQAU4Ky2bEaO5k4B1393B7GvDbqPrLzewSghGOdgQjMgCvA3eFoyCzwn+VXnb3bQBm9hbQPyz/MtDRzL4ebrcClkQd93QNSQlAT+CzqO3RwAvuXlk2DbgoxnGnAH2BfweDPABUECQe84DrzOxO4DWCJKoyzhOAd8JjWhAkWbFsDGMTEWkyNm0qqnunBpKWFonL13goMUm8h4CJZrYK6OTus8PyGcAtwCfh6wjBaMlY4PYY7dT4yD4zOw24hmA0ZZOZXQxcBeDuz5jZXOBsghGUK4FLw0Ojb1LfC7SJOtckd99v5CZU22LbEqB1feKuJgIsdfdRsSrDBbVnAZcRXMep4TF3uPv/1aP91mFsIiKSwvSAtcR7BhgF3ECQpADg7h8TJAMTCRKTVwlGVPa4+9oY7cwFhpnZwHD7u1F1nQlGCgrMrBVB8gGAmQ0ANrr7QwQJz4n1iPk5ghGKNmEbHczs6HocB8F6FIvangWcF05FAXynhuPeBAaaWdViWDMbbmYRM+sLFLr7E8B1wPFmlhbGOSlqaqeVmQ2pof2j2XfUR0REUpASkwRz953AswR/6T9SrXoGsNPdN7j7BoK/6GOOUrj75wSjINPN7E0g+m6YfxMsXv0gfP1OVN1FwLtmtgj4A/CTeoT9G4IP8flmthSYQ/DBXh9zgL5m1imMeynBgt03zGw2wdRVrOvbSjA1c6uZLTGz5cBtBKMio4FFZrY4vL7vu3u5uz8K/B14LYxzITCyhrjGESSJIiKSwiIVFRXJjkGaGDP7b6DU3f8n2bFA1d1QM4Hh7r67noflAKv17cKSDFPzgjXaky+akuRIJJVNv3t8qq4x6QusOeh24hWQSJTfk1rrOfoR3O5c36RERESSRItfJe7cfRfBrb8pwd3nJzsGERGpH42YiIiISMpQYiIiIiIpQ4tfRWLLAVYnOwhppkaPDn7m5yczCklxpbvKKCpMneV88Vr8qjUmIrUoKCimvFzJOwSPvk6lOwCSLZH90WnPXgC2N7L+1ntkX+qPg6OpHBEREUkZSkxEREQkZSgxERERkZShNSYitYjHN2U2JU3xK9YPRcL6IyM9se0nUGOMOZHi3R/VF7yWlZWRl/co27ZtJTd3CKNGjeXppx9j69YCKioq6NIli5EjT6d799hfrv7SS9NZv34tu3btqjo+2ZSYiNRCj6SXZJi6cjMAk69/NsmRSKqZfvd4opfTLlgwj+LifRfYduvWncGDj2Xnzp28/fYbzJr1CpdcciWxpKen07fvAD744L0ERn1gNJUjIiLSCG3evIklSxYyfPiIfcpHjjydnJz+9OzZi/T0dCKRSI1tnHXWeZgNSnSoB0QjJiIiIo1MRUUF+fmvkJs7lOzsbvvU7d69iwcf/BMArVq1YsyYs5MR4kHTiImIiEgjs3z5MoqKCjEbxI4dxQDs3r2bkpKdZGS05IILvsapp46hrKyMt99+M8nRHhiNmIiIiDQyxcVFlJSUkJf3aFXZihXLSU9PZ8yYs+nVqw+9evVh1aoVrF+/jpKSEtq0aUNZWRmRSIT09PQkRl87JSYiIiKNzIABRlbWYQBs2VLA/Plz6d07h06dOjNz5st069ad4uIiNm7cQJs2bWndujUA06bdS2ZmFhMmTATgww+dTZs2ArB16xbef/9d+vTpS7t2ybsjMSFTOWaWb2bnh68fMrMfJuI8jYGZVZhZzN9wHXWLzaxN+PpaM8tOZJzheXLM7KpEnyfGedeYWW74+kUz65+Ac4w2swXxbldEJBkyM7Po3/9I+vc/supW4I4dO9GjR28+/3wjs2fPZOnSRXTr1p3zzvtKjQtg582bzeLFCwFYv34d+fn/Ydu2rQ12HbFoxOQQmVm6u++Nd7vuPjRq81rgVeDzeJ+nmhzgKmBags9TI3c/L1nnFhFpjHr06MWkSddVbVeOhsQSvR/AZZd9N2FxHaxaExMzuwXIdPefhttZwAqgNxAB/gAMD3d/1N1/W0d7Y4B7gW8Be4CHgLZAOvCQu99lZuuBYe7+uZm9CFS4+5fCEYNF7t7DzMYCdwCtw2uY4u5PhOcYBDwItAMWAwOAO9z9eTM7Ioy5N9AGeNzdp4bHrQEeAc4CjgDucvf7YlzDFcAEYBMwCPhOGM+EMJZS4Bp3Xxx12A1mdjaQBUx292fqqjOzCqAD8BOgO/C0mZUCF7v7+9ViGgHcGe4P8DN3f6WyDXcvrtZmOfAwMDj8Pbi7XwTcD/Q1s8XAR+7+dTMbHv7O2gE7gB+7+3wzywEWAH8Bzgn78xLg+8BJQAkw3t03xujD04A/hvvMI3gvVdatAc5392U1/b7MLA24DzgD2AUUu/vI8PjzgJsI3hu7gZ+6+7zqMYiISGqqayrnYWCCmVUmMBcDz7r7DuCW8PhjgFOAy83s3JoaMrNLgN8B57j7MmAS8KK7D3H3XOCBcNdZwBlmlkHwF3y/8PVYYGa4zzvAqe4+DDgTuMvMuoR1jwJ/CNu8hy8SJwgSj3vd/UTgeOBcMzsrqr6tu48ARgO/qWmaBTgVuM3djw8TkEfcfXgYzy3An6vtX+7upwBfBqZVm5aprQ53nwJ8Cnzd3YfGSEoygX8CN7r7EOA4YH4NcVcaB3Rx90HhMVeH5T8A3g/P83Uzawk8A9zi7scCNwPPhOUQJFNzwut+AJgB3B/uuxDYbwrPzFoBTwA/Cn8PcwgSj1hq+n0NIfi9V8ZfOW3Yn6D/z3X344HvAnl19IWISKPStWuHlPwXrydl1zpi4u5rzex94DzgOeAKgmkFCD4YfuLuFUChmT0elv07RlPfJvjreKy7F4ZlrxMkFC0JkpFZYfnMsJ31wFsEf02fFJbNCPfpCvyfmQ0EyoBMwMJYc4HHwvgXmNlSgsp2BAlHVzOrjKsDcDTwn3D7ifC4NWa2FegJfBDjeua4+8qo7ePNbHIYRzlwZLX9HwjbdTN7BziZoD/rqquPEQTJxJthO3uBuiYIlwBHmdn9QD7wQg37GbDb3V8N255hZrvD8iKCkYrKY98BPokaKVpIMPoUq82d7p4ftplnZvtNHdXx+3qYYJTtATObCTwf1o8D+gOvRx3TwswOr6kjREQam02biureKQnS0iJxSU7qs8bkIWCima0COrn77LA8AlRU27f6dqUlwCiCqY95AO7+jJnNBc4Gfg5cCVxKkHzcAnwSvo4QjJaMBW4P2/sTwYf3V929wsxWEAzdV8YUK460sHy4u++pIc7SqNd7qbl/iitfhInV08Aod3/HzLoTJFU1idVv9amrrb2a7CUcFTOz1pWF7r7KzI4m6NNzgalmdswBxFNZtqvauerTf7XFG63W35eZDSZIXMYCvzWz48K2X3L3y2Psf3Q9zysiIklUn7tyniFIKm4gSFIq/Qf4rplFzKwDwRqLV2to4x3gQuBvZnY6gJkNADa6+0MECceJAO7+McGH2kSCxORVgpGaPe6+NmyvM7AmTErOIlhHgrtvB94nWMNC+GF1TFhXBMwmSIII63uZ2b6PzDtwletc1oXbk2Ls8+3wfAOBoQQjQfWpq1QIdKrh/G8Cg8J1JphZetS01kq+mMq6uPIAM+sJ7HX3fwE/JRiByoxxng+AVuHaoMo1QhkE64wO1gdAGzMbFbb59VjXVtvvy8y6Am3c/aWwfjvQD3gFOCdMWiqPGY6IiDQadSYm7r4TeBa4jGDOv9KvCP5CfReYS7D49aVa2nmXYC3AX81sHHAR8K6ZLSJY4PiTqN1nEAz3b3D3DQTTQDOj6n9OMA00F/g6sDSq7nLgWjNbSLAQcwnBBxcEizMHmdm7ZvYu8CRBknPQwqmpXwDzzex1ggWi1e0yszcIphyudvfP61lX6V7gwfAW4n2+1MDdtwBfBX4fTlstJFiPAUHS8b9mNpsg+ah0DDDXzJYAbwO/dvdPCfrRzWyZmT3t7ruBrxGMqCwFphKsddld3/6pzt13ESSO95vZ28AJwNoadq/p99ULeDWMfynB9OE8d/+QYNTtATNbYmbL+WL9jIiINAKRiooDnTlIbeHahJ3haMoggjUU5u7JvTFbGpscYLW+XViSYWreTQBMvmhKkiORVDP97vGNYY1JX2DNwbbTFJ9jMhK408wq1zJ8T0mJiIhI49DkEhN3f4VgrYGIiIg0Mvp2YREREUkZSkxEREQkZTS5xa8icZIDrE52ENJMjR4d/MzPT2YUkoJKd5VRVJiaC/K1+FWkARQUFFNeruQdgsdgp+rdAMmQyP7otCf4XtDtjay/9R7Zl/rj4GgqR0RERFKGEhMRERFJGUpMREREJGVojYlILeL1Nd5NRdeuHZIdQkpJWH9kpCe2/QRqjDEnUn37I3pRa1lZGXl5j7Jt21Zyc4cwatRYZs+eyUcfraCkZCd9+vTlS1+6sMa2/vjH3++z3bdvf849d/zBX0QDU2IiUgs9kl6SYerKzQBMvv7ZJEciDWX63eOpXCa7YME8iov3XzQ7YIDx7ruL6tVev34D6d9/IADt2zeuZFFTOSIiIili8+ZNLFmykOHDR+xTftppZzBkyHH1biczM5OcnP4MHHgURxzRI95hJpRGTERERFJARUUF+fmvkJs7lOzsbofU1oIFb7FgwVu0b9+BUaPGkpPTL05RJp5GTERERFLA8uXLKCoqxGwQO3YUA7B7925KSnYeUDvDhg3nnHO+zOjRZ7Jr1y7+858X2LNnTyJCTgiNmIiIiKSA4uIiSkpKyMt7tKpsxYrlpKenM2bM2TUeV1ZWRiQSIT09WDQ9YsRpVXVr165h1aqPKC4uokuXzMQFH0dKTERERFLAgAFGVtZhAGzZUsD8+XPp3TuHwYOHsGbNKrZsCRZFFxcX8f7779K9e086d+7CtGn3kpmZxYQJE/n441WsWLGc7t17sWtXKWvXrqFNmzZ07NgpmZd2QJSYSEozs4eABe5+3wHW/RJ4z92fNLPRQEt3fyXB4YqIHLTMzCwyM7MAaN16HQAdO3YiO/tw/vWvPD799BMACgo2k5//H844YxydO3fZp40OHTqyY8cO5s6dTUVFOV27Hs4pp5xeNZrSGCgxkaQysxbuXhbvdt39F1Gbo4H2gBITEWkUevToxaRJ11Vtf+UrF9W4b/R+mZmH1bpvY6DEROpkZrcAme7+03A7C1gB9A5/DnP3z83sRaDC3b9kZtnAInff7z41M6sAbgS+BMw2szzgj0A7oDUwzd3viTpkiJm9CvQCXgd+4O67a6urHE0BXgO+D6SZ2ZnAE+7+m7h1joiIxJUSE6mPh4G3zOxn4ejGxcCz7r7DzGYBZ5jZM0AOEDGzDGAsMLOWNtPcfTSAmXUAznT3XWbWHnjbzF529+XhvicBpwClwIvAVcB99ajD3d81sz8D7d39hkPtCBGRRNFTcwNKTKRO7r7WzN4HzgOeA64Arg2rZwJnAuuBt4AIQbJwJjCjlmYfjnrdFviTmQ0ByoHuwBCgMjF50t2LAczsYeBrfJF81FYnItJobNq0/9NeG5O0tEhcvsZDzzGR+noImGhmuUAnd58dls8gGB0ZG76O3q5txKQ46vVUYCPBlNAQ4G2CKZ1YIkDFQdSJiEgjoMRE6usZYBRwA0GSAoC7fwzsBSYSJCWvEoyo7HH3tfVsuzOwzt3LwsTntGr13zCzdmbWArgUmFXPukqFQOO5V05EpBlTYiL14u47gWeBy4BHqlXPAHa6+wZ33wCUUPtoSXV3AN8zs/nAzQSLWKO9DvwLeA9YB0yrZ12lfwInmNliM/v5AcQlIiINLFJRoZFvkRhygNX6dmFJhql5NwEw+aIpSY5EGsr0u8c3pTUmfYE1B91OvAISEREROVRKTERERCRlKDERERGRlKHERERERFKGFr+KxJYDrE52ENJMjR4d/MzPT2YU0oBKd5VRVNi4F9rHa/GrnvwqUouCgmLKy5W8Q/C47MZ+10A8JbI/Ou3ZC8D2Rtbfeo/sS/1xcDSVIyIiIilDiYmIiIikDCUmIiIikjK0xkSkFvH4psymRF/Lvq+E9UdGemLbT6DGGHMixeqPprDQNZGUmIjUQo+kl2SYunIzAJOvfzbJkUgiTL97PNFLYsvKysjLe5Rt27aSmzuEUaPGsmHDel57bQbbtm0lMzOLMWPOomvXw2O2t3DhWyxbtoRdu0rp06cfY8acRcuWrRrmYhJAUzkiIiJJtGDBPIqLv0hVysrKeOml6ezZs5tTTz2dkpIdvPzy85SXl+937MqVK3jrrTfIzj6c4447qWq7MVNiIiIikiSbN29iyZKFDB8+oqps7drVlJTsJDd3CLm5Qzn66FwKC7fz6aef7Hd8ZdnQoSdwwgkn0bZtOz744P0Giz8RNJUjIiKSBBUVFeTnv0Ju7lCys7tVlRcWFgLQrl378GeHsHwb0HufNtq0aQvA+vWfkJaWTmlpCeXl5ZSWltC6dZvEX0QCaMREREQkCZYvX0ZRUSFmg9ixoxiA3bt3U16+t4YjIvuVDB48hM6dM3n77Td45pnHSE8PFk6npzfecYfGG7mIiEgjVlxcRElJCXl5j1aVrVixnI4dOwFUJSs7dgTrTyrLy8rKiEQipKen06ZNG775zcsoKNhEy5atePHFf1FWVkZGRkYDX038aMSkkTKzHDPbHLV9m5m1rM++yVTfWMxstJktaIiYRESSYcAAY9y48xk37vyqNSa9e+cwduw5tGnTlmXLlrBs2RKWL19Ghw4d6d69JwDTpt3LU0/9DQiSl/nz57JlSwFvv/0m27ZtZejQE5J2TfGgxCROzCzZo0+3AjETk4ZkZunJjkFEpDHIzMyif/8j6d//yKqko2PHThxxRA/GjTufjIwM5syZRZs2bRk37nzS0vb/yI5EIqxa9RH5+a/y6aefcMIJJ3PMMUMb+EriK9kfpo2amVUANwJfAmab2Z3A74FjgdbALOA6d99rZvnAfGAE0B3Ic/efh+1cD0wg+H2UAte4+2IzywEWuPth4X77bEfFcX/48k0zKwdGu/u2WuI+CfgN0DEs+oW7vxDWnQ/cBmQA5cBEd19qZn8HDGgFfARc6e5bzWw0cA8wGxgO3AE8X+18PwB+CmwA8qvVnQfcFPbXbuCn7j6v2j6jgbvc/YTq22Z2GfBD4FRgL/Af4Cl3/3N92hYRSQU9evRi0qTrqra7d+/JhAkTY+4bvV/btu24+OIrEh1eg1JicujS3H00gJn9FXjN3b9rZmnA34Ergb+E+/YGRgEdgJVm9oC7fwg84u53h22cCfwZOLm+Abj7D8xsEnCKuxfXtq+ZdQ7bP8/dN5jZEcB8M8sFsoG/Aqe5+4dm1oovRmF+4u6bwzbuAP4L+HlYdwxBMvWjGOc7liA5GObun5nZH6Pq+gO3AOPcvdDMBgP/pvqy89qv/dEwUfkNsB0oCJOSQ25bRCRR9ITcmikxOXQPR73+MnBiOAIC0BaIvvH8KXcvB7ab2XKgP/AhcLyZTQYyCUYpjkxgvKcAfYF/m1llWQUwADgJeDFMlnD3XcCucJ/LzewSgkSlHbAiqs0P3X1uDecbDbzg7p+F29OAi8LX4wj64PWoWFqYWezHG9bsh8BCglGe4+tqOyoWEZGk2LSpqO6dGpm0tEhcvsZDicmhix6hiABfcfdVNexbGvV6L8EHZUvgaWCUu79jZt2B9eE+Zey7Dqh1HOKNAEvdfVT1CjOLOUpjZqcB1xCMyGwys4uBq6J2qW2UZv/72/ate8ndL49xzqOjNuvqh25Ae4IEqyNQWFvbIiKSurT4Nb6eA35euQDUzA4zs751HNOaIEFcF25PiqrbCGSY2YBw++Ja2ikCOtUjxjeBgWY2prLAzIabWQR4GTjPzAaG5a3MrAPQmXCaJJzeubIe56k0K2wzO9z+TlTdK8A54TRLVSwx2lgN9DOzLmGc34ravyXwJMFan9uAJ8KFyPVtW0REUogSk/i6lmAkZImZvQu8BPSo7QB3LwR+QbDO43VgR1RdGfAT4D/h4tmanroDcDcw08wWh+tIajrfVoIpp1vNbEk4pXQbEAmncL4HPGlmS4C5QA7B2oyVwAfh63dqu6Zq51sKTAXeMLPZfDEaRHi+S4EHomK5OkYb68PrWwi8SrCIttLvgMXu/oS7P0iQxNxR37ZFRCS1RCoqKpIdg0gqygFW69uFJRmm5t0EwOSLpiQ5EkmE6XePb+prTPoCaw66nXgFJCIiInKolJiIiIhIylBiIiIiIilDiYmIiIikDCUmIiIikjJ0V45IbDkEtx6LNLzRo4Of+fnJjEISpHRXGUWFTe9uv3jdlaMnv4rUoqCgmPJyJe8QfLdHU7zF8WAlsj867QkeWbS9kfW33iP7Un8cHE3liIiISMpQYiIiIiIpQ4mJiIiIpAytMRGpRTy+wrsp6dq1Q7JDSCkJ64+M9MS2n0CNMeZEitUf1Re/lpWVkZf3KNu2bSU3dwijRo1lw4b1vPbaDLZt20pmZhZjxpxF166H79dWRUUF8+bNwf19du0qpUOHjgwffgoDB1pCryuRlJiI1ELflSPJMHXlZgAmX/9skiORRJh+93iil8QuWDCP4uIvSsrKynjppem0aNGCU089nYUL3+Lll5/n4ou/TVravhMdn3yylkWL5tO1azbHHXcib701h5kzX6JfvwGkp6c30BXFl6ZyREREkmTz5k0sWbKQ4cNHVJWtXbuakpKd5OYOITd3KEcfnUth4XY+/fST/Y6vfORHx46d6dWrDy1btqJly5ZEIpEGu4Z404iJiIhIElRUVJCf/wq5uUPJzu5WVV5YWAhAu3btw58dwvJtQO992ujVqw+5uUNYtmwJK1euID09nfPO+8p+IyuNSeONXEREpBFbvnwZRUWFmA1ix45iAHbv3k15+d4ajth/FGTbtq2sWPEBvXr14ZxzLqBt23bMnPkye/bsSWDkiaURExERkSQoLi6ipKSEvLxHq8pWrFhOx46dAKqSlR07gvUnleVlZWVEIhHS09NZs2Ylu3fv4sgjj6Zfv4F8/PFqli9fxpYtBRx+eDcaIyUmsg8zqwA6uHtxLfvkAGe7+7QGiul+YCywCygGfuLuC8K6S4EbgUHAte5+X9RxbYEHgeOBMuAGd3++IWIWEanLgAFGVtZhAGzZUsD8+XPp3TuH448/iZdems6yZUvIyGjJ8uXL6NChI9279wRg2rR7yczMYsKEiVXJynvvLWXv3jLWrFlFWlp6VXljpKkcORg5wFUNeL5/A8e4+xDg18CTUXWLgQnAYzGOuwEocvcBwAXAX81M9/+KSErIzMyif/8j6d//yKqko2PHThxxRA/GjTufjIwM5syZRZs2bRk37vyY60b69RvIsGEnUFS0ndmzZ9G6dWvOPPNc2rRp09CXEzcaMWnmzOyrwFRgC/Bitbq/Awa0Aj4CrnT3rcD9QF8zWxyWXwTcB5xBOKrh7iPNbDRwl7ufELZXtR2+vgd4CxgBVAAT3H159RirjXLMBXqaWZq7l7v7srDt8hiX901gYtjGh2a2ADgXeOoAukhEJOF69OjFpEnXVW13796TCRMmxtw3er9IJMKIEaMYMWJUwmNsKBoxacbMLBv4CzDe3U8Bdlfb5SfufoK7HwO8B/xXWP4D4H13H+ruXweGAGcCg8JRjfPrGcJg4M/ufiyQB9xcj2N+CLzg7rESkep6Ax9Hba8FetUzNhERSQKNmDRvJwPvuLuH29OA30bVX25mlwAtgXbAihraWQWkAw+Y2Uygvus43N0Xha/nEUy31MjMJgAXA03nTwMRaZb0hNyaKTFp3mp8Ao+ZnQZcA5zi7pvM7GJqWFfi7tvNbDAwmmCR6m/N7DiCBafRo3Ktqx1aGvV6L7W8H83sQmAKMNbdP6vxiva1FugDbAq3ewOz6nmsiEjCbNpUVPdOjUxaWiQuX+OhqZzmbS4wzMwGhtvfjarrDGwHCsysFXBlVF0hULXk28y6Am3c/SXg5+Fx/YDVQD8z62JmEeBbBxOkmZ0P/B4Y5+5rDuDQp4CrwzYGAsOBlw4mBhERaRhKTJoxd/+cYBRkupm9STDCUenfwErgg/D1O1F1SwE3s2Vm9jTBuo1XzWxJWPdvYJ67rwfuBhYCrwIbDjLUBwmmk542s8XhvywAM/uWmX0CfAP4lZl9YmaDwuPuBDqb2UcE00tXuXvT+zNFRKQJiVQ+Z19E9pEDrNaX+EkyTM27CYDJF01JciSSCNPvHt/Up3L6AmsOup14BSQiIiJyqJSYiIiISMpQYiIiIiIpQ4mJiIiIpAwlJiIiIpIydFeOSGw5BM9hEWl4o0cHP/PzkxmFJEjprjKKCpve3X7xuitHT34VqUVBQTHl5UreIXiEdlO8xfFgJbI/Ou3ZC8D2Rtbfeo/sS/1xcDSVIyIiIilDiYmIiIikDCUmIiIikjK0xkSkFvH4psymRF/Vvq+E9UdGemLbT6DGGHO8RC9qffrpx9i2bQvl5eV06ZLFyJGn0717T5YvX8bChW+xY0cx3bv3ZMyYs2nfvuY+KynZyeOPP0RpaSkjRoxi2LATGupykkaJiUgt9F05kgxTV24GYPL1zyY5EjkQ0+8eT+VS127dunPyySfy2WdbePvtN5g16xXOOus8Zs16hSOO6MGxxw7jzTdn8/rrMzjvvK/U2OacObMoKyursb4p0lSOiIhInI0ceTpmRs+evUhPTycSifDpp58AMHjwsRx77HF07ZrNmjWrKC2N/cfPxx+vZs2aVQwbNrwhQ086jZiIiIjE2e7du7jzzv8BoFWrVowZczaFhdsB2LBhPV27Hs727VsBKCwspHXrNvscv2fPbl577VVOPvlUMjJaNmzwSaYRExERkTjLyGjJpZdeyqmnjqGsrIy3336TAQOOpFu37rz33lIef/wh9u4tB6BFi/T9jn/nnfm0aJFBr145lJTsBKC0tITS0tIGvY5k0IiJiIhInKWlpdG/f386dsxm1aoVrF+/jt2793Dhhd+koGAzaWkR5szJZ8OG9XTs2AmAsrIyIpEI6enpFBcXsW3bFh577MGqNhctmk9GRgYnnHBysi6rQSgxERERiaO1a9fw0UfOwIH92LBhExs3bqBNm7a0atWKOXPy6do1m88/38gnn6xlyJDjadEiA4Bp0+4lMzOLCRMmcswxQ8nJ6QfA+vXrWLZsCWaD6N//yGReWoNQYtLImFkF0MHdi2vZJwc4292nNVBM+cBd7v58jLr7gbHALqAY+Im7LwjrLgVuBAYB17r7fVHHtQUeBI4HyoAbYrUvIpJqWrVqzeefb+Sjj5y0tHS6devOiBGjqhbAvv/+Ulq0yOCYY4Zy8skjY7aRnd2N7OxuAOzZswdYQmbmYXTpktmAV5IcSkyaphzgKqBBEpM6/Jsg6dhjZucDTwL9w7rFwATg5zGOuwEocvcBZjYQmG1mA2pLyEREUsHhh3djwoSJMb8r55vfvKzG4yZNui5m+VFHDeaoowbHNcZUpsQkxZnZV4GpwBbgxWp1fwcMaAV8BFzp7luB+4G+ZrY4LL8IuA84g3Dkwt1HmtlogpGOE8L2qrbD1/cAbwEjgApggrsvryHUM83sBqAnkOfukwGqjXLMBXqaWZq7l7v7svC85THa+yYwMWzjQzNbAJwLPBWjj6aE+xcA+cDY8BouA34InArsBf4DPOXuf67hGkREJMmUmKQwM8sG/gKc4u5uZjdW2+Un7r453PcO4L8IRh9+wL4JxzDgTOAody83sy71DGEw8G13v9rMbgJuBi6pYd9B4TlaA3PN7M0YUy8/BF5w91iJSHW9gY+jttcCvarvZGYXAOcDQ4AS4OnKOnd/NEywfgNsBwqUlIhIIlV/8m1zfhLuwVJiktpOBt5xdw+3pwG/jaq/3MwuAVoC7YAVNbSzCkgHHjCzmUB912q4uy8KX88DLqhl34fdvQwoNrMnCEZnqs5jZhOAi4FR9Tx3fY0hGKHZEZ7nYeCWqPofAguBDIL1KiIiCRM9dRNrKqcpS0uLxOVrPPQck9QWqanCzE4DrgHOcfdjCEYzWsfa1923E4x+PAkcC7xnZt0IFpVGvweqHx99w/xe6p/IRgimfipjvRCYAoxz98/q2cZaoE/Udm9gXV3niqEb0J4geetYz3OLiEiSKDFJbXOBYeHiT4DvRtV1JpyeMLNWwJVRdYVAp8oNM+sKtHH3lwimerYD/YDVQD8z62JmEeBbhxDrZWbWwszaAd8AZoXnPh/4PUFSsuYA2nsKuDpsYyAwHHgpxn6zgG+YWVszSwOqVpaZWUuCZOxG4DbgCTPTKKGISApTYpLC3P1zgrtrppvZmwQjHJX+DawEPghfvxNVtxRwM1tmZk8TrM141cyWhHX/Bua5+3rgboKpjleBDYcQ7jthG4sJ1pFUTuM8SDBa8bSZLQ7/ZQGY2bfM7BOCROZXZvaJmQ0Kj7sT6GxmHxFMCV3l7vuNibr7c8DLwBJgJsFi3+1h9e+Axe7+hLs/SJCI3XEI1ygiIgkWqaiobRRcJPWZWQd3LwpHTP4KfOruNx9isznAan27sCTD1LybAJh80ZQkRyIHYvrd47XGJFhj0hdYc7DtaFhbmoJHwofKtSEY/fldcsMREZGDpcREGj13vzDZMYiISHxojYmIiIikDCUmIiIikjK0+FUkthyCu3hEGt7o0cHP/PxkRiEHqHRXGUWFXyyW1+LXg6M1JiK1KCgoprxcyTs0v//J1iWR/dFpz14Atjey/tZ7ROJBUzkiIiKSMpSYiIiISMpQYiIiIiIpQ4mJiIiIpAwlJiIiIpIylJiIiIhIylBiIiIiIilDiYmIiIikDCUmIiIikjL05FeR2NIheMSyfEH9sa+E9Ue3boltP4EaY8yJ1Jz6I+pa0w+lHX1XjkhspwKzkx2EiEgjdBow52APVmIiElsrYDiwAdib5FhERBqDdOAIYD6w62AbUWIiIiIiKUOLX0VERCRlKDERERGRlKHERERERFKGEhMRERFJGUpMREREJGUoMREREZGUocREREREUoYeSS9SjZkdCTwMZAEFwOXu/mFyo2o4ZnYX8DUgBzjG3ZeF5c2yX8wsC3gU6E/w0KiPgKvdfVNz7RMAM/sX0BcoB4qBH7n74ubcJwBmditwG+F/O829Pw6GRkxE9vdn4H53PxK4H/jfJMfT0P4FjAI+rlbeXPulAvidu5u7HwusBH4T1jXXPgGY6O5D3H0YcBfwf2F5s+0TMzsOOBlYG1XcbPvjYCkxEYliZtnAccDjYdHjwHFm1jV5UTUsd5/j7uuiy5pzv7j7FnfPjyqaB/Rpzn0C4O7bozY7AeXNuU/MrBVB4jGJIJlt1v/dHAolJiL76gWsd/e9AOHPT8Py5kz9AphZGnAN8BzqE8zsr2a2FpgCTKR598kvgb+5++qosubcHwdNiYmISP39gWA9xX3JDiQVuPt33b03MBm4M9nxJIuZjSD40s8/JjuWpkCJici+1gE9zCwdIPzZPSxvzpp9v4SLggcC33T3ctQnVdz9UWAM8AnNs09OB44CVpvZGqAn8DLBgunm2B+HRImJSBR3/xxYDHwrLPoWsMjdNyUtqBTQ3PvFzKYAxwNfcfdd0Lz7xMzam1mvqO0LgC1As+wTd/+Nu3d39xx3zyFI0Ma5ex7NsD8OVaSioiLZMYikFDM7iuD2vi7AVoLb+zy5UTUcM7sX+CrQDdgMFLj74ObaL2Y2GFgGrABKwuLV7n5hM+6Tw4FngXbAXoKk5AZ3f6e59km0cNTk/PB24WbfHwdKiYmIiIikDE3liIiISMpQYiIiIiIpQ4mJiIiIpAwlJiIiIpIylJiIiIhIylBiIiIiIilDiYmIiIikDCUmIiIikjL+P68b8o8Um9FMAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "top_mpg = merged.sort_values('mpg').tail(10)\n", + "\n", + "fig, ax = plt.subplots(figsize = (6,5))\n", + "ax.barh(top_mpg.car_name,top_mpg.mpg)\n", + "for i in ax.patches:\n", + " plt.text(i.get_width()+0.2, i.get_y()+0.5,\n", + " str(round((i.get_width()), 2)),\n", + " fontsize = 10, fontweight ='bold',\n", + " color ='grey')\n", + "ax.set_title('Top 10 MPG (red line is average)')\n", + "plt.axvline(merged.mpg.mean(),color='red')\n", + "plt.show();" + ] + }, + { + "cell_type": "markdown", + "id": "260484cb-5145-4c0f-8952-8f6ba652c8a5", + "metadata": {}, + "source": [ + "In more detail:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "38935e91-3877-47a3-96d6-cd54e2704bdb", + "metadata": { + "execution": { + "iopub.execute_input": "2022-08-01T04:20:12.931405Z", + "iopub.status.busy": "2022-08-01T04:20:12.931238Z", + "iopub.status.idle": "2022-08-01T04:20:12.947214Z", + "shell.execute_reply": "2022-08-01T04:20:12.946618Z", + "shell.execute_reply.started": "2022-08-01T04:20:12.931389Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
mpgcylindersdisplacementhorsepowerweightaccelerationmodel_yearorigincar_nameefficiencyloadbore_sizegrunt
32246.6486.065.02110.017.9803mazda glc0.7558140.04075821.501056.2500
32944.6491.067.01850.013.8803honda civic 1500 gl0.7362640.04918922.751122.2500
32544.3490.048.02085.021.7802vw rabbit c (diesel)0.5333330.04316522.50576.0000
39344.0497.052.02130.024.6822vw pickup0.5360820.04554024.25676.0000
32643.4490.048.02335.023.7802vw dasher (diesel)0.5333330.03854422.50576.0000
24443.1490.048.01985.021.5782volkswagen rabbit custom diesel0.5333330.04534022.50576.0000
30941.5498.076.02144.014.7802vw rabbit0.7755100.04570924.501444.0000
33040.9485.053.51835.017.3802renault lecar deluxe0.6294120.04632221.25715.5625
32440.8485.065.02110.019.2803datsun 2100.7647060.04028421.251056.2500
24739.4485.070.02070.018.6783datsun b210 gx0.8235290.04106321.251225.0000
\n", + "
" + ], + "text/plain": [ + " mpg cylinders displacement horsepower weight acceleration \\\n", + "322 46.6 4 86.0 65.0 2110.0 17.9 \n", + "329 44.6 4 91.0 67.0 1850.0 13.8 \n", + "325 44.3 4 90.0 48.0 2085.0 21.7 \n", + "393 44.0 4 97.0 52.0 2130.0 24.6 \n", + "326 43.4 4 90.0 48.0 2335.0 23.7 \n", + "244 43.1 4 90.0 48.0 1985.0 21.5 \n", + "309 41.5 4 98.0 76.0 2144.0 14.7 \n", + "330 40.9 4 85.0 53.5 1835.0 17.3 \n", + "324 40.8 4 85.0 65.0 2110.0 19.2 \n", + "247 39.4 4 85.0 70.0 2070.0 18.6 \n", + "\n", + " model_year origin car_name efficiency \\\n", + "322 80 3 mazda glc 0.755814 \n", + "329 80 3 honda civic 1500 gl 0.736264 \n", + "325 80 2 vw rabbit c (diesel) 0.533333 \n", + "393 82 2 vw pickup 0.536082 \n", + "326 80 2 vw dasher (diesel) 0.533333 \n", + "244 78 2 volkswagen rabbit custom diesel 0.533333 \n", + "309 80 2 vw rabbit 0.775510 \n", + "330 80 2 renault lecar deluxe 0.629412 \n", + "324 80 3 datsun 210 0.764706 \n", + "247 78 3 datsun b210 gx 0.823529 \n", + "\n", + " load bore_size grunt \n", + "322 0.040758 21.50 1056.2500 \n", + "329 0.049189 22.75 1122.2500 \n", + "325 0.043165 22.50 576.0000 \n", + "393 0.045540 24.25 676.0000 \n", + "326 0.038544 22.50 576.0000 \n", + "244 0.045340 22.50 576.0000 \n", + "309 0.045709 24.50 1444.0000 \n", + "330 0.046322 21.25 715.5625 \n", + "324 0.040284 21.25 1056.2500 \n", + "247 0.041063 21.25 1225.0000 " + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "merged.sort_values('mpg',ascending=False).head(10)" + ] + }, + { + "cell_type": "markdown", + "id": "15d5a2c5-cb01-4a54-8ce4-375018ebc79a", + "metadata": {}, + "source": [ + "## What vehicles have the lowest MPG?" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "65588fe3-762f-42b0-9427-feb64275b792", + "metadata": { + "execution": { + "iopub.execute_input": "2022-08-01T04:20:12.948105Z", + "iopub.status.busy": "2022-08-01T04:20:12.947948Z", + "iopub.status.idle": "2022-08-01T04:20:13.102377Z", + "shell.execute_reply": "2022-08-01T04:20:13.101717Z", + "shell.execute_reply.started": "2022-08-01T04:20:12.948090Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfMAAAFBCAYAAABjDUY1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABHNUlEQVR4nO3de3gV1b3/8XcS0SqXgKAxagVK8IsVAbGituIlFWlRC7Q93hWttba0ttbaU3tqPZ7Wtp5jsT3W+rNY75darUcU74hya4CigkCRL6QQlZtAhIQkEE3C749ZgZ3N3kkI2dnZyef1PHmyZ9aamTUr+8l31mVmsnbu3ImIiIhkrux0F0BERET2jYK5iIhIhlMwFxERyXAK5iIiIhlOwVxERCTDKZiLiIhkOAVzEenwzOwQM3Mz+1Qr7e8KM5uTJK2fme00s/3C8ktmNqE1jht3nP8wsz+39n4zgZl9xcyeSHc52pP90l0AkY7MzEqAPKAW+AQoAr7t7h80Y9srgG+6+6kx6x4E1rj7Takob4Iy/BIYBxwD3Orut8SlXwz8BugDTAO+4e4fJdlXCXA4cLi7b45ZvwgYCvR395JwjhcDH4eft4Br3X15yD8Q+CXwReAA4EPgZeC/3X1NklO5EXjA3XfsVQW0Anf/cor2++tU7DcTuPtzZvZrMxvi7ovTXZ72QC1zkdQ7z927AflEgecPaS7P3igG/h14IT7BzI4F/gRcRnTBUgXc3cT+VgMXxezjOODABPn+J9TZkcBG4MGQvwCYD6wDjnf3HsAXgH8BpybYD2Z2ADABeDRJepaZ6X9hK6rvlUixvwDfaoPjZAS1zEXaiLvvMLO/Ab+vX2dmuUTB/ctEwfBe4NeAAfcAXcysAqghCqqXADvN7DrgDXc/z8yOAf4fMAxYC/zU3Z8L+38w7Lc/MBJ4B/gaUUt1AtHFxUXuvjBJmR8K+7kkQfIlwFR3nxXy/Bx418y6u/u2JNXwCHA5uy9oJgAPA7cmOX6VmT0O/DWsugX4u7tfH5NnIzF1msBJwNbYVruZzQD+DpwBDAeOCwHoD8AJwCbg5+7+ZMjfG3gg5F8OvNLI8RoIx3rU3f9c39sCzAOuArYCE939pZA3F7gDGAPUhWP+p7vXJtjvLUCBu18ahg/+TPQ9ygFWAue6+4cJtrsRuBo4FPgA+Jm7PxMuej4ETnX3pSHvIcD7QF9332hm5xL9rfoBy4h6mRaHvCVE38NLokXrCtyQ6Fghfw7wP0TfgW3AJKL67+LuNc2oixlEF2jfa+pv0BnoalSkjZjZQcAFRP/I6/0ByAU+A5xOFOiudPd3gW8Dc929m7v3dPfJwGOEVmsI5F2AqcCrRP8wrwUeMzOLOcb5wE1EXeHVwFzg7bD8N6J/mC1xLNHFAQDu/i+ibvGjG9lmHtDDzI4J/8wvIEmLGcDMuhEFh/qLjbOAp/eynMcBnmD9ZUQtu+5EwXsa8DhRPV4E3B16HwD+COwg6l35RvhpqZNCefoQBbP7zCwrpD1EdOFWABwPnE0U/Jsygeh79GmgN9F3Z3uSvP8iurDLBf4LeNTM8t29Gvg/YnpOiL47M0MgHw7cD1wTjvEn4LlwEVDvIuAcoKe71yQ7Vsh7NdHFxzCiC6pxceVsqi7eBfqZWY/GKqazUMtcJPWmmFkN0I2oy3g07GqZXEDUXbwN2GZmk4iCzH3N3PfJYb+3uXsd8LqZPU/0T/WWkOcZd38rHPMZopbgw2H5r7S8ZdMNKItbV0YUHBtT3zqfSdTKXZsgzw1m9j2iAPoP4Iqwvg+woT5TyHMr0f+yv7j71Qn21ZOo5RfvQXf/Z9jPl4ASd38gpL1tZk8DXzez5US9Gce5eyWw1MweAk5r4jyTec/d7w3HfYhoaCLPzHYSBbee7r4dqDSz3xFdcPypiX1+QhRgC0JL+a1kGd39qZjFv5rZT4ERwLNEFzOTgZ+F9Itjjn018Cd3nx+WHzKz/yD6Ds4M6+6MnQ/SxLHOB/63vsfEzG4jmgeBmeU1oy7q/6Y9gfLkVdM5KJiLpN44d38tBO+xwEwz+yywE9gfeC8m73vAEXux78OBD0IgT7aP2K7W7QmWu+3F8WJVAPGtoh4kDpyxHgFmEXX9P5wkz2+TTPIrJWodA+DudwF3mdmtROPriWwh8QVG7CTEvsBJZrY1Zt1+oayHhM+x+WP/Zntr18VIGEaA6G9wMNAFWB/TsZIdd9xkHiFqlT9hZj2Jejt+5u6fxGc0s8uB64m6yuuP3Sd8fh040MxOCuUcBjwT0voCE8zs2pjd7U/0HazXoKxNHOvwuPzxf4+m6qL+b7o1/hw7IwVzkTYSxvr+z8z+RDRZ6xmiFlVfovFHgKPY3VJN9ErD+HXrgE+bWXZMQD8KWNGaZU/in0Sz0AEws88QzS5v9Nju/p6ZrSYaC71qL485Hfgq0fhpcy0GfphgfWxdfkDUnTwqPlO4CKshCpbLw+qj9uL4zfUB0TBIn9BF3WwhaP8X8F9m1g94kagrv0EPj5n1JZqX8UWiIZzacDdBVthPnZk9SdSz8yHwfMz8hw+AX7n7rxopyq46bepYwHoaXoB9OuZzc+riGKLelE7fKgcFc5E2E8ZFvwL0At4N/9yeBH4VWjAHE7Vifhs2+RA40sz2d/ePY9Z9Jma384FK4N9DF/0XgPOAE1upzF2IJlRlA/uFiVafhAuTx4C5ZjaSaAz+F8D/NTL5LdZVQC93r9zLmc+3AP8wszuASe6+1sz6EP1jT3bcfwA9zewId0/UpQ/wPHCbmV0G1N+/PAyocPd3zez/gFvM7BtErcwJQMlelLtJ7r7ezF4FJoXJhBVEvRdHuvvMxrY1szOBzUQXheVEF4l7TJoDuhIF3E1huyuBwXF5HgemEPWC/Cxm/b3AM2b2GlGdHkQ0IXBWkr95U8d6EviBmb1A9B3+SX1CM+vidOClhBXSCWkCnEjqTQ0z0suBXwET6sdqiSasVQKrgDlE/0jvD2mvE7V+N5hZ/X3Z9wGfNbOtZjYlBPmvEI0vbiYaf728/p7sVnAvUVf8RUT/2LcTjekTzuHbREF9I1G358Tm7NTd/+Xub+5tYdx9BdEY7ZHAO2a2jWhW+jrg50m2+Zjo1rZLG9nvNqIJVheGfW0A/puopwGieQXdwvoH2buegb1xOVHX9TKi4YG/ETOs0IjDQt5yoolhM0kwsdDdlxHNGp9LdGF4HFH9xeapv0A8nJhgGf5eVwN3hbIVs3suwx6acax7iSZuLiaa4PgiUQ9I/UVIU3VxEU3PJeg0snbuTNSTJyLScYRbrGYTTTZMNstb0sjMvgzc4+59m5H3POAydz8/9SXLDArmIiLS5szsQOBMotZ5HtEth/Pc/bp0litTqZtdRETSIYto0t4Wom72d4Gb01qiDKaWuYiISIZTy1za2n5Es4F1J4WISPM1+r9T/1ClrfUlmgU7Ekj2hisREWnoSKJJnAVEj8ltQMFc2lr9rSWz01oKEZHMlI+CubQD6wG2bKmkrk7zNQB69+5GaWlFuovRbqg+dlNdNJTJ9dH9W1cCsG1yyx5RkJ2dRa9eXSH8D42nYC5trRagrm6ngnkM1UVDqo/dVBcNZWx9bIgeyd8K5U/0ZD9NgBMREcl0CuYiIiIZTsFcREQkwymYi4iIZDgFcxERkQynYC4iIpLhFMxFREQynIK5iIhIhlMwFxERyXB6ApykRe/e3dJdhHblkEO6p7sIrW5HdQ3byrfvWn733aW89dZ8KisrOPzwIznzzLPp1m3P816+fDkvvfQylZUV5OXlU1g4mh49ctuy6CIZR8Fc0uKqW19l45btTWeUjDV10li2hc8bN27gjTdeJT//CIYMOZ6iotnMmjWdMWPGNdimqqqSv/3tb/Tq1ZshQ4Yzf/4cpk9/mfHjL2jz8otkEnWzi0jKrVsXve322GOHMGTIcA455FBKSlaxY0fDC7qVK5dTW1vL8OEjGDLkePr3L2D9+rWUlW1NQ6lFMoeCuYik3IEHHgTA+vVr2bLlI8rKtgBQXl7eIF95eRkAXbtGwzD13fD160UkMXWzi0jKFRQczT//uXjXT5cu+wOw3345jW63c2eGviFLpI0pmItIyuXk7Mf48RdQWrqZ7Ows5syZwfr1a+nRI5eamhqysrLIycnZNdGtsnJb+B29u1oT4EQap252EUm5uro65syZwebNG1m69B3WrHmfwYOHsd9+XZg8+U6eeupRAAoKjJycHBYuXMDixQtZvbqY/PwjyM3tmd4TEGnn1DJvZ8xsJ9Dd3SsSpC0CTnH37XHrjwAeBYYDK939czFpY4GbgQOALOB+d58Uk3418JOQ9hLwfXevayot7vhXAOe6+9dbfubSkWVlZbFu3RqWLVvMfvt14bjjhnHyyV/YI1/Xrt342te+xssvv0JR0Szy8g6jsHB0GkosklkUzDOIuw9LklQB/CfQA7glLm0DcJ67rzOzXOAtM/uHu882s/5hu+OBUqKAfSnwcGNprXpS0ilkZWVxwQWXJUybOPH6BsvHHHMMffoc2RbFEukwFMzbp++b2XigN/Bjd38akrfa3b0MmGVmZ8TvyN3nx+Yzs3eBvsBs4OvAFHffFPZ/L3AlUcBOmmZm+wN/AM4A1gLLW+/URURkbymYt0/l7n6imX0BeBJ4ujV2amaDgJOBa8Kqo4D3YrK8D3y6GWnXAP2BwUAXYBZQ0hpllI6lpU+264hPxGsp1UVDGVsfXaI7N1JVfgXz9umJ8HsecLiZfcrdd+zLDs0sH3gW+K67r9vH8p0JPOTunwCfmNmjwKn7uE/pgDZt2tZ0pjiHHNK9Rdt1RKqLhjK5PnI/qQWgrIXlz87OavQx2JrN3j7tAHD32rC8TxddZnYo8Bpwu7s/GZP0PlGXe72jgA+akZa1L+UREZHWpZZ5B2dmvYFpwF3u/ue45KeJxtr/i2iS29XA481Imw5cZmZ/Jepmv5go+IuISBqoZd4BmFmOma0BngKGmNkaM7slJN8IHA1cY2aLws+VAO6+CvglUXf+SmAV0S1ujaYBk4mC9z+B54GZKT9JERFJKkuPS5Q21g9YrbemdXxTJ43VmPk+Ul00lMn1kTtuDABlU15s0fYxY+b9STDhWC1zERGRDKdgLiIikuEUzEVERDKcgrmIiEiG061pkhb33XR2uosgKbajuibdRRDpNBTMJS1KSyuoq9OdFJDZM3RFpH1QN7uIiEiGUzAXERHJcArmIiIiGU5j5pIWjb39pzPK2Nc6psDHn9Q2WJ49+3WKi1ewfXsVffv255xzxgOwfv1aZs6cztatWzj44N6ceeYoDjkkL+E+V60qpqhoJpWVFeTl5VNYOJoePXJTfi4ibUXBXNJCj3OVZKZOGrvHuoICY8mShbuWa2pqePnlqey3336ceurpvPXWfF555XkuvvhKsrMbdjhWVVUybdoL9OrVmyFDhjN//hymT3+Z8eMvSPm5iLQVdbOLSLs2cmQhQ4cOb7Du/fdXs317FYMHD2Xw4GEcc8xgysvLWLduzR7br1y5nNraWoYPH8GQIcfTv38B69evpaxsaxudgUjqKZiLSMYpLy8HoGvXbuF397B+a4K8ZQ3yduvWvcF6kY5AwVxEOpCsJnPoTZHSESmYi0jG6dGjBwCVlRXh97awPprUVlNTQ21tbYN19Xnqt9EEOOlINAFORNq1kpJVfPTRZgAqKraxbNkS8vIO48ADD2Lp0nfo0mV/3n13Kd279+Dww48EYPLkOzn44N5ceOEECgqMuXPnsHDhAqqqqli9upj8/CPIze2ZxrMSaV0K5u2EmY0DfgPsAC50d9+HfZUA57r70gRpDwAjgKXA48DNwAFE/ZP3u/ukkO8M4EVgRdi02t1PitnP1cBPwnYvAd9397qWllkkmUWL3tw1sa20dDMzZkyjsHA0o0efy6xZ05kz5w0OPrg3Z5wxao+Z7BCNlY8aNYa5c2dRVDSLvLzDKCwc3danIZJSCubtxzXAze7+1N5sZGY57l7bdE4wszzga0BPd68zs5OA89x9nZnlAm+Z2T/cfXbYZJm7fy7BfvoD/wkcD5QSBfNLgYf3puwizTFu3PlJ0y68cELC9RMnXt9gecCAgQwYMLBVyyXSniiYtwNm9jtgZPTRJrr7mWb2JaKWeg6wCbjG3YtDi/n3wGzgROBWMysD7ga2A/NIMAvIzLoDbwAHAW+b2UPu/rv6dHcvM7N3gb5h3435OjDF3TeFfd8LXImCuYhIWiiYtwPu/kMzOx74rbs/b2aHAo8Ap7v7MjO7CngMqO/mPg74jrtfa2YHAKuAS9x9hpmdD1yb4BjbzGwM8Ka7D4tPN7NBwMlEPQT1jjazt4FPgLvd/aGw/ijgvZh87wOfbnEFiMTRE/F2U100lLH10SUHSF35Fczbp5OAd9x9WVh+ALg7tK4BVrr73PDZgCp3nwHg7k+a2eS9OZiZ5QPPAt9193Vh9dvAp0OLvT/wmpmtdffXWn5aIs2jV8JG9HrchjK5PnLDY4rLWlj+7OysRh+DrVvT2qcsoLGbYSvi8rZY6AV4Dbjd3Z+sX+/u5e5eFj6vBqYAXwjJ7xN1x9c7CvhgX8ohIiItp2DePs0FhoWub4AJwEJ3T3RJtxw40MxOAzCzrwPNuoHWzHoD04C73P3PcWn5ZpYVPh8MnA0sCslPA+PM7BAzywauBp5ERETSQsG8HQoTyy4DHjezxUQzxS9NkrcauAj4o5n9A/gcUcu5OW4EjgauMbNF4efKkPY1YKmZLQJmAY+4+7PhmKuAXxJNtltJNGb/6F6fqIiItIosPdpQ2lg/YLXemibJTJ00NmPHRVtbJo8Rp0Im10fuuDEAlE15sUXbx4yZ9wdK9khvedFERESkPVAwFxERyXAK5iIiIhlOwVxERCTD6aExkhb33XR2uosg7dTHnzTrVQMiEkPBXNKitLSCujrdSQGZPUM3FTL2cZ0iaaRudhERkQynYC4iIpLhFMxFREQynMbMJS0ae/tPZ6Rx4t00AU5k7ymYS1roca6SzNRJYxssz579OsXFK9i+vYq+fftzzjnjAVi/fi0zZ05n69YtHHxwb848cxSHHJKXcJ+rVhVTVDSTysoK8vLyKSwcTY8ezXofkUhGUDe7iLR7BQXWYLmmpoaXX57KJ598zKmnns727ZW88srz1NXV7bFtVVUl06a9wP77H8App5zGpk0fMn36y21VdJE2oWAuIu3ayJGFDB06vMG6999fzfbtVQwePJTBg4dxzDGDKS8vY926NXtsv3Llcmpraxk+fARDhhxP//4FrF+/lrKyrW10BiKpp2AuIhmnvLwcgK5du4Xf3cP6rQnyljXI261b9wbrRToCBXMR6UCymsyh1z5LR6RgLiIZp0ePHgBUVlaE39vC+mhSW01NDbW1tQ3W1eep30YT4KQj0Wz2dsLMSoBz3X1pussCYGZjgZuBA4iaO/e7+6SY9KuBn4S0l4Dvu/ues49E9lFJySo++mgzABUV21i2bAl5eYdx4IEHsXTpO3Tpsj/vvruU7t17cPjhRwIwefKdHHxwby68cAIFBcbcuXNYuHABVVVVrF5dTH7+EeTm9kzjWYm0LrXMJZkNwHnuPhj4PPAdMxsJYGb9gf8ETgEGhp9L01VQ6dgWLXqTefPmAFBaupkZM6axadNGRo8+ly5dujBnzhsceOBBjB59LtnZe/5L69q1G6NGjaG6upqioln06XMohYWj2/o0RFJKLfM2ZmanALcD9U8J+bG7vxo+n29m9wL5wG/d/a6wjQG/B/oA+wO/d/cHzOznwMHu/sOQrzewAjgKKAaGu/v6kHYnsMHdfx1Xnv2BXwNfAmqBVe4+3t3n1+dx9zIzexfoC8wGvg5McfdNYR/3AlcCD7dSNYnsMm7c+UnTLrxwQsL1Eyde32B5wICBDBgwsFXLJdKeKJi3ITM7GHgG+Kq7F5lZDtAjJstB7n6KmfUDlprZg8AO4HHgEndfbmbdgTfNbC7wEDDfzH7s7jXAxcCz7l5pZg8B3wL+y8y6AhcCgxMU66fAZ4gC/8dm1idBuQcBJwPXhFVHAe/FZHkf+HRL6kQkET0RbzfVRUMZWx9dcoDUlV/BvG2dAixz9yIAd68FtsSkPxHWl5jZFuBIoqGQY4AnogY6EI1jH+Puz5jZMmAM8BxwBXBdyPNHYI6Z/Qq4DHjV3TcmKNO5wI/c/eNw7M2xiWaWDzwLfNfd17X81EWaT6+Ejej1uA1lcn3khscUl7Ww/NnZWY0+BlvBvG01dd/MjpjPtUR/n53AZncflmSbB4EJZrYKyHX32QDu/oGZLQDGAhPZ3apudpnM7FDgNeB2d38yJul9oi73ekcBHyTbj4iIpJYmwLWtIuCzYdwcM8sxs15NbONAlZldVr/CzAaZWX33/NPAacANRIE91h+Ixtpr3H1ukv1PBa4LY+fUd7OH8fdpwF3u/ue4bZ4GxpnZIWaWDVwNPImIiKSFgnkbcvePgK8Cd5jZYuAt4IQmtqkBzgMuNLPFZvZP4G6iiXC4exVRN/hlxE1Ac/eZRK39uxs5xG1ACbDIzBYB94T1NwJHA9eY2aLwc2XY7yrgl8A8YCWwCni0GVUgIiIpkKWnIXVc4RayvwMFIei3B/2A1XprmiQzddLYjB0XbW2ZPEacCplcH7njxgBQNuXFFm0fM2ben6gB1jC95UWT9szMfkF0G9mP2lEgFxGRFNAEuA7K3W8meoKbiIh0cGqZi4iIZDgFcxERkQynbnZJi/tuOjvdRZB26uPwcA0RaT4Fc0mL0tIK6up0JwVk9gzdVMjYx3WKpJG62UVERDKcgrmIiEiGUzAXERHJcBozl7Ro7O0/nZHGiRva2/rYUV3DtnI9UVA6LwVzSQs9zlVa09RJY4mdQjh79usUF69g+/Yq+vbtzznnjG90fSKrVhVTVDSTysoK8vLyKSwcTY8euSk+E5GWUTe7iHRIBQW2V+tjVVVVMm3aC+y//wGccsppbNr0IdOnv9zaRRRpNQrmItLhjBxZyNChw5u9Pt7Klcupra1l+PARDBlyPP37F7B+/VrKyramoLQi+07BXEQkTnl5GQBdu0ZzO7p1695gvUh7o2AuItIEvSpa2jsFcxERoKamhtra6FGy9RPdKiu3hd8VDdaLtDeazZ4iZrYT6O7uFXuxzRnAb939cyksVwlwLrAMeAoYDOwANgLfdvd/hXx5wCNAP2A78C13n99Umkh7UFKyio8+2gxARcU2li1bwuGHH8nWrVsSru/ZsxeTJ9/JwQf35sILJ1BQYMydO4eFCxdQVVXF6tXF5OcfQW5uzzSelUhyapl3bg8Bx7j7UOBZYHJM2m+AWe5+NPBd4DEzy2pGmkjaLVr0JvPmzQGgtHQzM2ZMY8OGdUnXx+vatRujRo2hurqaoqJZ9OlzKIWFo9v0HET2hlrmrcTMvgr8GvgIeDEu7UtEATAH2ARc4+7FIe1W4EJgLfCPuO1+BVwAlAIzgC/Wt9rNbAIwkehvWAZ8x909QblGAncTtaDnAVkA7l4HPBeTdS5wXczy+UQtb9x9jpntAD4HLGgiTSTtxo07P+H6QYOOTbrNxInXN1geMGAgAwYMbNVyiaSKWuatwMwOBe4Fxrr754GP49IeAS5x9yHA48BjIe084CvAMKAQGBSz3XlE3eFDgVOAgTFpI4kC6mnufgJwO3B/gnIdADwBXOvuI4A5wFFJTuN7hOBuZr2BLHffHJP+PvDpxtKS15CIiKSSWuat42Tg7ZiW8WTgv8Pnk4B33H1ZWH4AuNvMugNnAn+tH1c3s/uAm0K+M4En3b0ypD0E/DyknUcU5OebGUSt7V4JymVAlbvPAHD3J81s8h6ZzH4MHEN0QSGSkTrqI3E76nm1VMbWR5ccIHXlVzBvHY2NF2cBye5r2Zft7nf3m/ehXACY2feAi4m68KsA3L3UzDCzPjEt8KOADxpLa+pYIqnUEd8Jr3fdN5TJ9ZH7SXSnRFkLy5+dndXoOy3Uzd465gLHm1l9V/g349KGmVl9F/oEYKG7bwOmA+ebWVczywGujNnuDeDfzOwgM8sGLotJmwpcbmZHAphZjpmdkKBcy4EDzey0kO/rwK57a8zsW8A1wNnu/lHctk8B3w75TgUOBN5qRpqIiLQxBfNW4O4bgW8BU82sCKiJSdtEFIgfN7PFwKXhB3d/HngeWAS8DiyM2e454BXgnZBWTDTRDXefBfwMeM7M3gGWAmMTlKsauAj4o5n9g2iS2vsAoZv/HqAbMM3MFplZ7O1lNwJnmNlKogl0l4VJc02liYhIG8vSk43aLzPr7u7bQsv8z8A6d7+pqe3auX7Aar01TVrT1EljM7b7tTGZ3K2cCplcH7njxgBQNuXFJnImFtPN3h8oiU/XmHn79rCZ9WN3N/b/pLc4IiLSHimYt2PunvxlyyIiIoHGzEVERDKcgrmIiEiGUzAXERHJcBozl7S476az010E6UB2VNc0nUmkA1Mwl7QoLa2grk63RUJm326TCqoPkb2nbnYREZEMp2AuIiKS4RTMRUREMpzGzCUtGnv7T2eUsa91TJG9rY8d1TVsK9/9eODZs1+nuHgF27dX0bdvf845Z3yj6xNZtaqYoqKZVFZWkJeXT2HhaHr0yE2aXySdFMwlLfRsdmlNUyeNJX7KXEGBsWTJwj3yJlsfq6qqkmnTXqBXr94MGTKc+fPnMH36y4wff0Erllqk9aibXUQ6nJEjCxk6dHiz18dbuXI5tbW1DB8+giFDjqd//wLWr19LWdnWFJRWZN8pmIuIxCkvLwOga9doOKhbt+4N1ou0NwrmIiJN0Kuipb1TMBcRAWpqaqitrQXYNdGtsnJb+F3RYL1Ie6NgLs1mZr8wM80AknavpGQVxcUOQEXFNpYtW8LWrVuSrgeYPPlOnnrqUSCaJJedncPChQtYvHghq1cXk59/BLm5PdNyPiJNUTDfC2aW0wr7SOsdBPtyfHe/2d3/2prlEUmFRYveZN68OQCUlm5mxoxpbNiwLun6eF27dmPUqDFUV1dTVDSLPn0OpbBwdJueg8je6LC3ppnZTuAmYBzQG7gaOAv4EtAF+Dd3fzfknQBMJKqPMuA77u5mdgVwIbAJ+CxwlZkdCNwO1N8I+2N3fzUcr7u7V8Qcv7u7V4TP/w6cA8w2s/HAle6+IOS9Hhjk7t+KO4crgIuBrcAQYC1wbTj+QGABcKm77zSzi4EfAPuHzW9w9+lhPyXAfUAhsCoc775wTu+H8/vQ3W8wsweBN939rrDtruW4z2OBW4HaUG/fc/cZzf37iKTSuHHnJ1w/aNCxSbeZOPH6BssDBgxkwICBrVoukVTp6C3zre5+IvAT4FlgjrsfDzwM/AzAzEYC5wOnufsJRIHy/ph9nArcEtLeB54B/t3dhwLDiQJqc2S7+xnu/nPgLqKLB8wsC/gO8Mck250IXO/ug4DtwONEAf6zwHHAF0O+V4CTw/ldCDwUt598dz/T3a8CbgbK3f2zwKXA6c08h1i/ACa6+zBgKPB2C/YhIiKtoMO2zIP6LuG3gZ3u/kJYfgv4avh8HlEwmm9mAFlAr5h9zHH3f4XPpwDL3L0IwN1rgS3NLEtscH0YuNnMDgZGELWK30my3d/dfU34vBAocfcyADN7BygAXgMGAH8xsyOAT4DDzOwwd98Qc8x6ZxK18HH3zWb2f808h1ivA5PM7CngJXdf2oJ9iLSajvoUvY56Xi2VsfXRJRqlTVX5O3ow3xF+1wLVMevru4YhCt73u/vNSfZREfM5q5Fj1RJ6OszsU43tx92rzOxx4ErgDJK3ymH3OdQfI365/jz+AvzI3aeYWTZQBcSWo7nnUUPDHptE54K7/9DMjiPqun/KzO5w93sb2a9ISnXE16bqdbANZXJ95H4S3SlR1sLyZ2dnNfoY7I7ezd4cU4HLzexIiCa5mdkJSfIWAZ81s1Ni8ta34v9F1CUOUTd4U/4IXAecADzdwrLH6gmsDp+vAg5oJO90ogsJzKw3EPuA6l3nYWb5RK34PZiZufsSd/9f4FF2n7uIiLSxTh/M3X0W0fj5c6HbeikwNknej4i65+8ws8VE3fX1gf+HwJ/MbDZwSDOOuxpYTtQr8PE+n0h0YTDFzOYA/YDSRvL+EuhlZsuAR4BXY9ImA0eGurgTmJ9kH7eZ2VIzWwSMAv57n0ovIiItlqUnG6WHmfUgCuYjYsbE01WWW4Bu7n5DGxyuH7BaL1qR1jR10tiM7X5tTCZ3K6dCJtdH7rgxAJRNebFF28d0s/cHSvZIb3nRpKXM7NvAMmBSugO5iIhkvo4+Aa5dcvd7gHvSXY567n5LussgIiItp5a5iIhIhlMwFxERyXAK5iIiIhlOY+aSFvfddHa6iyAdyI7qmnQXQSStFMwlLUpLK6ir022RkNm326SC6kNk76mbXUREJMMpmIuIiGQ4BXMREZEMpzFzSYvG3v7TGWXsax1TZG/rY0d1DdvKdz8eePbs1ykuXsH27VX07dufc84Z3+j6RFatKqaoaCaVlRXk5eVTWDiaHj1yW3ZCIimmYC5poWezS2uaOmks8VPmCgqMJUsW7pE32fpYVVWVTJv2Ar169WbIkOHMnz+H6dNfZvz4C1qx1CKtR93sItLhjBxZyNChw5u9Pt7Klcupra1l+PARDBlyPP37F7B+/VrKyramoLQi+07BXEQkTnl5GQBdu0bDQd26dW+wXqS9UTAXEWmCXhUt7Z2CuYgIUFNTQ21tLcCuiW6VldvC74oG60XaGwVzEelwSkpWUVzsAFRUbGPZsiVs3bol6XqAyZPv5KmnHgWiSXLZ2TksXLiAxYsXsnp1Mfn5R5Cb2zMt5yPSlA4ZzM3sDDN7M0laPzPb3EblKDGzwUnSXjSzAeHzDDM7ty3KJNIZLFr0JvPmzQGgtHQzM2ZMY8OGdUnXx+vatRujRo2hurqaoqJZ9OlzKIWFo9v0HET2hm5NSxN3H5PuMoh0VOPGnZ9w/aBBxybdZuLE6xssDxgwkAEDBrZquURSJaODuZl9CfgNkANsAq5x9+IE+b4L/BBYD8yIWX8o8DiQF1a95u4/NLMrgIuBrcAQYC1wLXA7MBBYAFzq7jvNLA+4BxgAZAG3u/vDMYe/xMy+ABwO/N7d7wrHLgHOdfelcWXtAdwRjvsp4A3genevTXBePwEuC4sLgGvdvcLMbgEGAT2Ao4G3gNuASUBf4P/c/cdhH/nAH4CjgAOBv7j7r0PaSOBuYGcoxzjgHHdfama/BU4H9gc2A99w9/fiyygiIqmXscE8BOJHgNPdfZmZXQU8BpwUl28I8DPgeHf/0Mzujkm+BHjP3c8KeXvFpJ0IHOfua8zseaKgfzpQCbwNfBF4DbgTWOru40NgfNvM3o4J0nnufloI+gvNbJa7L27k1O4AZrr7N80sO5zTN4B7487ry0SB/PPANuAh4OfAT0KWE4DPARWhvLcBXyb6m682s8nuvhJ4GPilu88ys/2B6Wa2AJgF/AW4yN1nm9l44PsxRbjN3W8IZfkm8N/AhY2cl0hKddSn6HXU82qpjK2PLjlA6sqfscGcKGi/4+7LwvIDwN1mFl9TZwAvuPuHYXkyUN8HNw+43sxuB2YCr8Rs93d3XxM+LwRK3L0MwMzeAQqIgvlZwI8A3H29mb0AnAnUB/P7QtqHIe0MoLFg/hVghJn9KCwfBKxJkO8s4Al3Lw9lmgz8b0z6KzHlXUxUV9VAtZk5MMDM1oXyHGJm9dt1B44BPgS2u/vsUP5nzGxrzP6/HHo8upHZ3yPpIDria1P1OtiGMrk+cj+JOlfLWlj+7OysRh+Dncn/hLOIun+bky8hd59rZsOAUUSt3BuBU0PyjpistQmWY+suvhzJytWcMmcB49x9VTPyNXbc5pQ/O2xzort/ErsjMxuarKxm1hf4XdhutZl9nqjnQkRE0iCTZ7PPBYaZ2aCwPAFY6O7xlz1vAGNCtzzAVfUJZtYfKHf3J4DrgRNC1/beeA34VtjfYcCYcMx6V4S0Q4i6uWc0sb/ngBvNLCds1yeUM9404EIz625mWcA3Q1maLdTVbKKLGMLxPh3OYznQNYz3Y2ZjgZ4hWw/gY2BDqK9v781xRUSkdWVsMHf3TUSt6cdDN/Kl4Sc+32Lg18DfzWw20WS2emcQjWMvAl4Cvu3udXtZlO8DQ0MZpgE3uvs/Y9LfD8edC/zG3Zc0sb/riFrO75jZEuBl4IgE5/US8GjYb/0+b93LskM0b+CzZrYkHO+vQM/QJX8xcI+ZzQdOJup6Lwvn8BTwT+B1YHULjisiIq0kS48plGTMrHt9T4eZnUk0ya5fCy54YvUDVuutadKapk4am7FjqY3J5DHiVMjk+sgdF92NXDblxRZtHzNm3h8oiU/P5DFzSb2vmdkPiXpwdhDNbN+XQC4iIimgYC5JufuDwINpLoaIiDQhY8fMRUREJKJgLiIikuHUzS5pcd9NZ6e7CNKB7KiuSXcRRNJKwVzSorS0gro63UkBmT1DNxVUHyJ7T93sIiIiGU7BXEREJMMpmIuIiGQ4jZlLWjT29p/OKGNf65gie1sfO6pr2Fa++4mCs2e/TnHxCrZvr6Jv3/6cc874RtcnsmpVMUVFM6msrCAvL5/CwtH06JHbshMSSTEFc0kLPc5VWtPUSWOJnzJXUGAsWbJwj7zJ1seqqqpk2rQX6NWrN0OGDGf+/DlMn/4y48df0IqlFmk96mYXkQ5n5MhChg4d3uz18VauXE5tbS3Dh49gyJDj6d+/gPXr11JWtjUFpRXZdwrmIiJxysvLAOjaNRoO6tate4P1Iu2NgrmISBP0dklp7xTMRUSAmpoaamtrAXZNdKus3BZ+VzRYL9LeKJiLSIdTUrKK4mIHoKJiG8uWLWHr1i1J1wNMnnwnTz31KBBNksvOzmHhwgUsXryQ1auLyc8/gtzcnmk5H5GmdNpgbmYlZjY4Tce+wsz+1ox8w8zs/EbSvx3eN94m0llnIntj0aI3mTdvDgClpZuZMWMaGzasS7o+Xteu3Rg1agzV1dUUFc2iT59DKSwc3abnILI3dGtaCphZNrDT3fd1oG0YcC7wZKJEd79nH/cv0iGNG5f4GnjQoGOTbjNx4vUNlgcMGMiAAQNbtVwiqdLhg7mZnQLcDtQ/heLH7v5q+Hy+md0L5AO/dfe7wjYG/B7oA+wP/N7dHzCznwMHu/sPQ77ewArgKODHQAHQDRgAnGZm54X1O4F/Ade4+8YEZZwATCT6e5QB3wE2A78AepjZImCWu38/brtbgG7ufoOZXQFcDGwFhgBrgWvDuQ8EFgCXuvtOM3sQ+AToD3wamAV8190/NrOLgR+E8wa4wd2nJyjzj4ALQ5l3AN9x90V7/AFERCTlOnQwN7ODgWeAr7p7kZnlAD1ishzk7qeYWT9gaQhyO4DHgUvcfbmZdQfeNLO5wEPAfDP7sbvXEAXPZ929Mor/nAYMd/fNoTv6NuAEd19vZr8E/gA0eOqEmY0EzgdOc/dqM/sycL+7f8HMbgbOdfevN/OUTwSOc/c1ZvZ8OI/TgUrgbeCLwGsh70nA58P5vgh8C7gLeAX4Swj6BkwHjkxwrIfdfVI4h7OAe4CTm1lOkVbXUZ+i11HPq6Uytj665ACpK3+HDubAKcAydy8CcPdaYEtM+hNhfYmZbSEKWtnAMcATIUADHAAc4+7PmNkyYAzwHHAFcF3M/l50983h85lheX1Y/hPwToIyngcMJbpIAMgCerXwfP/u7mvC54VAibuXAZjZO0Q9B/XB/K/uXhHSHgK+RhTMBwB/MbMjiFrvh5nZYe6+Ie5YJ5jZfwAHA3XA0S0ss0ir6IivTdXrYBvK5PrI/SS6U6KsheXPzs5q9DHYHT2YZzWRviPmcy1RfewENrv7sCTbPAhMMLNVQK67z45Jq4g7dvyYeaIx9CyilvjNTZS1OeLPJ9H5JRJb1r8AP3L3KWHsvwr4VGxmM9sf+BtRb8LbZnY4Ube+iIikQUefzV4EfDaMm2NmOWbWVKvXgSozu6x+hZkNMrP67vmnibrTbyAK7MlMB8aY2WFh+Wp2t4pjTQUuN7MjY8p4QkgrB1J1Y+u/mVlXM9sPuBR4I6zvCawOn68i6pWI9ymiC4MPwvLEFJVRRESaoUMHc3f/CPgqcIeZLQbeAk5oYpsaoq7vC81ssZn9E7ibMCHM3auAZ4HLgIcb2c8/gZ8C08KxhxJNLIvPNwv4GfBc6ApfCowNydOBrmb2jpnd2ewTb55ZwBTgn0RBeXJYfx0wxczmAP2A0gRlLgduBhaY2SyiMXkREUmTLD2msPMJE/3erJ+938b6Aav11jRpTVMnjc3YsdTGZPIYcSpkcn3kjhsDQNmUF1u0fcyYeX+gZI/0lhdNRERE2oOOPgFOEnD3K9JdBhERaT1qmYuIiGQ4BXMREZEMp252SYv7bjo73UWQDmRHdU26iyCSVgrmkhalpRXU1elOCsjsGbqpoPoQ2XvqZhcREclwCuYiIiIZTsFcREQkw2nMXNKisbf/dEYZ+1rHFGmr+thRXcO2cj2JUDKfgrmkhR7nKu3B1EljiZ1qN3v26xQXr2D79ir69u3POeeMZ+vWLcyYMY3S0s3U1dWSl5fP6aefRW5uz4T7XLWqmKKimVRWVpCXl09h4Wh69EjV+5JEIupmFxGJUVBgDZYrKyuAnYwYcQqDBh3LmjXv88YbrybctqqqkmnTXmD//Q/glFNOY9OmD5k+/eU2KLV0dmqZi4gEI0cWUl5expIlC3etO+ywwxk37oJdyytWLGfLlj1eJgjAypXLqa2tZfjwERQUHM3GjRtYseJdysq2Jm3Ji7QGtcxFRBqRk5Oz6/PGjRuort5Bfv6RCfOWl5cB0LVrNCekW7fuDdaLpIqCuYhIM2zZ8hEvvfQs3bv3YOTIM5u1jV4xLW1FwVxEpAkffVTKlClPkpWVzdix/7ar5Q1QU1NDbW0twK6JbpWV28LvigbrRVIlpcHczM4wszeTpPUzs82pPH7MsUrMbHCStBfNbED4PMPMzm3F4/7ZzEY2kec6Mzu0tY65t8zsF2Z2QdM5RTq+kpJVFBc7ABUV21i2bAnr1q3h2WefZMeO7QwePJQPP1zPypXLd20zefKdPPXUo0A0eS47O4eFCxewePFCVq8uJj//CI2XS8p1+glw7j4mhfv+ZjOyXQe8BmxMRRnMbD93T/oWCne/ua2OJdLeLVr0JuvWrQGgtHQzM2ZMo7BwNNu3R7dRzps3Z1fegQMH7bF9167dGDVqDHPnzqKoaBZ5eYdRWDi6bQovnVqrBHMz+xLwGyAH2ARc4+7FCfJ9F/ghsB6YEbP+UOBxIC+ses3df2hmVwAXA1uBIcBa4FrgdmAgsAC41N13mlkecA8wAMgCbnf3h2MOf4mZfQE4HPi9u98Vjl0CnOvuS+PK2gO4Ixz3U8AbwPXuXhuXbzpwp7s/G5bPC/nONLMZwG/d/Xkz+1Y492qiHpHzga+F8vzNzHaEc80Hbg3H3A/4lbs/kaTevwH8ICx+DJwLHAi8CdwFnAU8amYnA2/GnPOD9ctxn8eGY9eGY3/P3WeYWT7wB+CosP+/uPuvY+rvPqAQWAVclaisIplg3LjzE64fNOjYpNtMnHh9g+UBAwYyYMDAVi2XSFP2OZiHQPwIcLq7LzOzq4DHgJPi8g0BfgYc7+4fmtndMcmXAO+5+1khb6+YtBOB49x9jZk9TxT0TwcqgbeBLxK1bO8Elrr7+BB83jazt2OCdJ67nxaC/kIzm+Xuixs5tTuAme7+TTPLDuf0DeDeuHwPAhOAZ8PyFcADCfZ3OzDY3T8wswOAHHf/lZldDXy9vpxmth441d1rQ1nfMrNX3H1LXH2eAfxHyLvBzLoBNUTBtjfwrrvfEvKe3Mh5xvoFMNHdZ5tZDtA1rH8Y+KW7zzKz/YHpZrbA3aeF9Hx3b96MIJF2pr0/fa+9l6+tZWx9dInuikhV+VujZX4S8I67LwvLDwB3m1l8ic8AXnD3D8PyZKLWKcA84Hozux2YCbwSs93f3X1N+LwQKHH3MgAzewcoIArmZwE/AnD39Wb2AnAmUB/M7wtpH4a0M4DGgvlXgBFm9qOwfBCwJkG+p4HfmVkfYCfRhcblCfK9DjxgZs+GeliV5LiHAPeb2UCi4HwwYER1FOsc4GF33xDOqwLAzAB2AE82cm7JvA5MMrOngJfcfamZdSWqq0PCvgG6A8cA9cH84fgdiWSK9vy6Vb0OtqFMro/cT6JO3bIWlj87O6vRx2C3RjDPIgpizcmXkLvPNbNhwCjgMuBG4NSQvCMma22C5dhziC9HsnI1p8xZwLhGgi4A7l4VAvRFYdWz7l6ZIOtXiXoZCoE3zOzb7v5Sgnz/D3gO+GoYPlhB1OWeqHzJVLp77PnV0HCyY6L9EYY2jgtlfMrM7gCeIKqrE939kyTHq2ikLCIikmKtMZt9LjDMzOpng0wAFrp7/OXHG8CYmJnbu8ZWzaw/UB7Ghq8HTghd23vjNeBbYX+HAWPCMetdEdIOAb5MzJh9Es8BN4buZsysTyhnIg+G/V9Bgi52M9sP+Iy7/8PdbwNeBY4PyeVA7H0rPYl6H3aa2SiinodEpgKXh654zKxb6L5P5F9EFxKEIYiEXeJmZu6+xN3/F3iUKIBvA2YTXWDV5/t0qGMREWkH9rll7u6bzOwy4PEQtDYBlybIt9jMfg383cw2AC/EJJ8B/MjM6luQ33b3uphu3eb4PvAnM1tM1Gq90d3/GZP+vpnNJppg9ht3X9LE/q4D/gd4x8x2Ek1cuw5YneDcZocJc7j7nPh0oomBD5pZT6AO+IDdwfFOou73KqIJcDcSDVPcSDQMkHAowN1nmtlvgNfMrC6U77wk5zKZaJLdO8AKYH6SfLfFdO9vZfcF1yVEQwn1dbaNaP7AhiT7ERGRNpSlJxRJG+sHrNZb06Q9mDppbLseg83kMeJUyOT6yB0X3QVdNuXFFm0fM2beHyjZI73lRRMREZH2QMFcREQkwymYi4iIZDgFcxERkQynYC4iIpLhOv2LViQ97rvp7HQXQYQd1XovkHQMCuaSFqWlFdTV6bZIyOzbbVJB9SGy99TNLiIikuEUzEVERDKcgrmIiEiG05i5pEVjr/LrjDL2Hc0p0lb1saO6hm3lux8rPHv26xQXr2D79ir69u3POeeMZ+vWLcyYMY3S0s3U1dWSl5fP6aefRW5uz4T7XLWqmKKimVRWVpCXl09h4Wh69MhNmFektSiYS1ro2ezSHkydNJb4qXYFBcaSJQt3LVdWVgA7GTHiFLZu3cKSJYt4441XGTfu/D32V1VVybRpL9CrV2+GDBnO/PlzmD79ZcaPvyC1JyKdnoK5iEgwcmQh5eVlDYL5YYcdzrhxu4PxihXL2bKlNOH2K1cup7a2luHDR1BQcDQbN25gxYp3KSvbmrQlL9IaNGYuItKInJycXZ83btxAdfUO8vOPTJi3vLwMgK5do2Gkbt26N1gvkioK5iIizbBly0e89NKzdO/eg5Ejz2zWNnrFtLQVBXMRkSZ89FEpU6Y8SVZWNmPH/tuuljdATU0NtbW1ALsmulVWbgu/KxqsF0kVBfNWYGbjzOxdM1toZraP+yoxs8GtVbYWlmGcmY1IZxlE0qGkZBXFxQ5ARcU2li1bwrp1a3j22SfZsWM7gwcP5cMP17Ny5fJd20yefCdPPfUoEE2ey87OYeHCBSxevJDVq4vJzz9C4+WScgrmreMa4GZ3P97dvbkbmVlO07nSYhyQNJi343KL7JNFi95k3rw5AJSWbmbGjGmUl5exfft2du7cybx5c5g27UWmTXsx4fZdu3Zj1KgxVFdXU1Q0iz59DqWwcHRbnoJ0UprNvo/M7HfAyOijTXT3M83sS8BvgBxgE3CNuxeb2RnA74HZwInArWZWBtwNbAfmAVmNHOunwMVAHVAJnOrudWb2E+CykG0BcK27V5jZg8Cb7n5X2H7Xcvi8Azga+DQwF5gAnA18BTjLzL4J3AG8H1fuu83sv4H+7r4j7Ps54Al3f7yFVSmSdoluNwMYNOjYpNtMnHh9g+UBAwYyYMDAVi2XSFPUMt9H7v5D4E3g+yGQHwo8Alzi7kOAx4HHYjY5Dnjc3U8GpgFPEAXfEcAc4KhExzGzCURB9gvuPhQ4LwTyLxMF8s+HfecAP29m8QcDY4BjgROAs9z9FeA54DZ3H+buD8eXO6ybCVwQytYX+Bzwt2YeV0REWpFa5q3vJOAdd18Wlh8gasnWP9JqpbvPDZ8NqHL3GQDu/qSZTU6y33OB/+fu5SFv/Y2uZxG1iMsBwvb/28yyTolpWb8NDCC6wEgkttwAdwK/Ax4CvgPc7+4fN/O4Iu1Ge3/6XnsvX1vL2ProEo1Opqr8CuatLwto7H6Uiri8e7Pf5h6vfrmGhr0vn4rLtyPmcy2Nfx9iy427F5lZjpl9gah7XhPmJCO159et6nWwDWVyfeR+Et3xUNbC8mdnZzX6GGx1s7e+ucAwMxsUlicAC9090V9wOXCgmZ0GYGZfB5LdwzIV+E59C9/Meof104ALzay7mWUB3wReC2n/IhrjxszygebdHAvljZQj1h+IhgnmuvsHzdy3iIi0MgXzVubum4jGsB83s8XApeEnUd5q4CLgj2b2D6Jx5/eT7PphooA+z8zeAZ41s2x3fwl4lOgiYknIe2v4PRk4MuS/E5jfzNN4BLjYzBaZ2eWN5HsC6EU0gU9ERNIkS08okpYys1OBe4Dj3L25X6R+wGq9aEXag6mTxrbrbttM7lZOhUyuj9xxYwAom5L4tsamxHSz9wdK4tM1Zi4tYmb3AaOAy/cikIuISAoomEuLuPtV6S6DiIhENGYuIiKS4RTMRUREMpyCuYiISIbTmLmkxX03nZ3uIoiwo7om3UUQaRUK5pIWpaUV1NVpEjxk9u02qaD6ENl76mYXERHJcArmIiIiGU7BXEREJMNpzFzSorG3/3RGGftaxxRpq/rYUV3DtvLdjxWePft1iotXsH17FX379uecc8azdesWZsyYRmnpZurqasnLy+f0088iN7dnwn2uWlVMUdFMKisryMvLp7BwND16NOe9RSItp2AuaaFns0t7MHXSWOKn2hUUGEuWLNy1XFlZAexkxIhT2Lp1C0uWLOKNN15l3Ljz99hfVVUl06a9QK9evRkyZDjz589h+vSXGT/+gtSeiHR6CuYiIsHIkYWUl5c1COaHHXY448btDsYrVixny5bShNuvXLmc2tpahg8fQUHB0WzcuIEVK96lrGxr0pa8SGvQmLmISCNycnJ2fd64cQPV1TvIzz8yYd7y8jIAunaNhpG6deveYL1IqiiYi4g0w5YtH/HSS8/SvXsPRo48s1nb6BXT0lYUzEVEmvDRR6VMmfIkWVnZjB37b7ta3gA1NTXU1tYC7JroVlm5LfyuaLBeJFUUzEVEgpKSVRQXOwAVFdtYtmwJ69at4dlnn2THju0MHjyUDz9cz8qVy3dtM3nynTz11KNANHkuOzuHhQsXsHjxQlavLiY//wiNl0vKNTkBzsx2At3dvaK5OzWzw4HH3L3RvigzKwHOdfelzd133Pb9gDfdvU9Ltg/7uAX4tbt/3NJ9xOzrj8AXgWqgAviBu7/ZjLQHgbOAzWFXT7n7r/a1PE2U9Qxgf3d/NZXHEckkixa9ybp1awAoLd3MjBnTKCwczfbt0Z0X8+bN2ZV34MBBe2zftWs3Ro0aw9y5sygqmkVe3mEUFo5um8JLp5aS2ezuvg5o3qBS+v0n8Ftgj2BuZvu5+968ieEl4Dp3/8TMzgX+CgxoRhrAbe5+V4vOoGXOALoBCuYiQaLbzQAGDTo26TYTJ17fYHnAgIEMGDCwVcsl0pTmBvMbzOxsoDfwH+7+dHyrOHY5QdopwO1A/ZMgfhzfIjSzHwFjgK+6e1lc2knAbUCPsOpmd38hvpCN5QsB9BagC1AHTACuCfmKzKyOKMD9HtgGDAQOAU4ws8cAAw4AioFvuPuW+OO7+/Mxi3OBI80s293rGkuL309jzOwbwA/C4sfAucAxwG/d/XMhzxn1y2ZmwIPAQUBO+PwK8G0g28zOAp5w99vM7HLgx8BO4F/ANe6+0cyuAC4GtgJDgLXAtUR/04HAAuBSd9dsHxGRNGhuMK9z98+HwFBkZrObewAzOxh4hihIF5lZDruDLUQB5U6gD/Dl+O5uM+sJ3AOMcff1ZpYPLDCzwXuR71Dgz8BId19pZgcQdTF/18wmAp+vH0aITpFTgNPdvTLs/gfuvjmk3wr8BLixiVP/HvBCkmCdKO16M7uGKIj+1N3fjd8oBOn/AE519w1m1g1oqudgIvCiu/8y7KOXu28xs3uAbu5+Q1g/mOhC6IRQf78E/gDU32B7InCcu68xs+eBx4HTgUrgbaIhhNeaKItIu9Pen77X3svX1jK2PrpEtzimqvzNDeb3Abi7m9nbwMnA4mZuewqwzN2Lwj5qgdhW7f1ELdVLkrTsPg/0B14KgRailmMBu8eYm8p3ElFAWxnKUE00dp3M32ICOcDlZnYJsD/QFVjR2Amb2YVELdnTmpn2M2C9u9eF1vHLZvaZUFexzgEedvcN4TxiL0CSmQX81sz2B94IP4mcSVRH68Pyn4B3YtL/7u5rwueFQEl9D4qZvUNUzwrmknHa8+tW9TrYhjK5PnI/if6dl7Ww/NnZWY0+BrslY+ZZREGyhoaz4T/VSP7GzCLq3j4E2Jhk+8Xunigw9mtmvpObKEO8XZP9zGwk8B2i1vsmM7sY+FayDc1sPPAr4Ivu/mFz0tx9bcznh83sd8CRwHtxu09Wl0n/FmFIZC5wNlFvwjeASxPso/7vGit2eUfM59oEy3qaoIhImjT31rQrAcxsIDAMmA9sALqYWUHIc3GSbYuAz4Zxc8wsx8x6xaTfD0wCpodZ8Im2H2hmuybUmdmJZhYf2BrL9wowJpQfMzvAzOr7OrYBjd0E2hMoA0pD9/w3kmUM4/J3AKPdvWQv0o6I+TyaKDiuZU9TiXoJ8kLebqFMq4HPmFmvcL4XxeyvANjg7g8C/wWMCEnlcec9naiODgvLV6OWtohIRmhua6razP5ONK59jbtvBDCzHwDTzOw9knTfuvtHZvZV4A4z60o0+ewGYgKFuz9mZjuIAvqXY4NdGN/9CnC7mf2eqKt7FXBe3HGS5gvj5FcDfw1j9rVEE+CWEF1IvG5m24l6COK9RNSSXQ6sAd5kd0CM9wDRpLS/xXR9f9HdS5tIeygE6DqiIPuVRLPo3X2mmf0GeC1M2KsO57fWzCYBbxEF9gVA/fTb84FLzOxjopZ2/eS5Z4DLzGwRuyfA/ZTo77kz1F39BEEREWnHsvS4QWlj/YDVemuatAdTJ41t12OwmTxGnAqZXB+548YAUDblxRZtHzNm3h8o2SO95UUTERGR9kDBXEREJMMpmIuIiGQ4BXMREZEMp3uDJS3uu+nsdBdBhB3Ve/PqBZH2S8Fc0qK0tIK6Ot1JAZk9QzcVVB8ie0/d7CIiIhlOwVxERCTDKZiLiIhkOAVzERGRDKdgLiIikuEUzEVERDKcgrmIiEiGUzAXERHJcArmIiIiGU5PgJO2lgPRu3llN9VHQ6qP3VQXDWVsfRx2GNDy8sdsl5MoPWvnTj1SU9rUqcDsdBdCRCRDjQTmxK9UMJe2dgBwIrAeqE1zWUREMkUOkA8sAKrjExXMRUREMpwmwImIiGQ4BXMREZEMp2AuIiKS4RTMRUREMpyCuYiISIZTMBcREclwCuYiIiIZTo9zlTZjZkcDDwG9gVLgcndfmd5SpY+ZlQA7wg/AT9z9lfSVqG2Z2W+BrwH9gOPcfWlY3ym/J43URwmd7HtiZr2BR4ABRA9IKQaucfdNnfX70RS1zKUt3QP80d2PBv4I/CnN5WkPvu7uw8JPh/4HncAU4DTgvbj1nfV7MoXE9QGd73uyE/gfdzd3HwL8C7gtpHXW70ejFMylTZjZocBw4C9h1V+A4WZ2SPpKJenk7nPc/YPYdZ35e5KoPjord//I3WfErJoH9O3M34+mKJhLW/k0sNbdawHC73VhfWf2mJktNrO7zaxnugvTDuh7klin/Z6YWTbwHeA59P1ISsFcJH1GuvtQohfPZAF3pbk80j519u/JH4AKOt957xUFc2krHwBHmFkOQPh9eFjfKdV3qbp7NXA38IX0lqhd0PckTmf+noRJgQOBC9y9Dn0/klIwlzbh7huBRcBFYdVFwEJ335S2QqWRmXU1s9zwOQu4kKh+OjV9TxrqzN8TM/sVcAIwLlzI6PvRCL0CVdqMmQ0iuqWkF7CF6JYST2+p0sPMPgM8TfSO4hxgGfB9d1+f1oK1ITO7E/gqcBiwGSh192M76/ckUX0A59EJvydmdiywFFgBbA+rV7v7+M76/WiKgrmIiEiGUze7iIhIhlMwFxERyXAK5iIiIhlOwVxERCTDKZiLiIhkOAVzERGRDKdgLiIikuEUzEVERDLc/wdcFRgY1dWJpwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "low_mpg = merged.sort_values('mpg', ascending=False).tail(10)\n", + "\n", + "fig, ax = plt.subplots(figsize = (6,5))\n", + "ax.barh(low_mpg.car_name,low_mpg.mpg)\n", + "for i in ax.patches:\n", + " plt.text(i.get_width()+0.2, i.get_y()+0.5,\n", + " str(round((i.get_width()), 2)),\n", + " fontsize = 10, fontweight ='bold',\n", + " color ='grey')\n", + "ax.set_title('Bottom 10 MPG (red line is average)')\n", + "plt.axvline(merged.mpg.mean(),color='red')\n", + "plt.show();" + ] + }, + { + "cell_type": "markdown", + "id": "3d1c5be8-b63f-496e-a2cd-475a47e7a542", + "metadata": {}, + "source": [ + "In more detail:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, "id": "1497a48c-42a3-447e-b1fb-e3a5b78902da", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:51.128643Z", - "iopub.status.busy": "2022-07-21T20:29:51.128285Z", - "iopub.status.idle": "2022-07-21T20:29:51.164545Z", - "shell.execute_reply": "2022-07-21T20:29:51.163776Z", - "shell.execute_reply.started": "2022-07-21T20:29:51.128603Z" + "iopub.execute_input": "2022-08-01T04:20:13.103850Z", + "iopub.status.busy": "2022-08-01T04:20:13.103446Z", + "iopub.status.idle": "2022-08-01T04:20:13.131408Z", + "shell.execute_reply": "2022-08-01T04:20:13.130488Z", + "shell.execute_reply.started": "2022-08-01T04:20:13.103820Z" }, "tags": [] }, @@ -1077,7 +1585,7 @@ " 0.634868\n", " 0.064243\n", " 38.000\n", - " 59.854922\n", + " 4656.125\n", " \n", " \n", " 26\n", @@ -1093,7 +1601,7 @@ " 0.651466\n", " 0.070155\n", " 38.375\n", - " 58.905625\n", + " 5000.000\n", " \n", " \n", " 25\n", @@ -1109,7 +1617,7 @@ " 0.597222\n", " 0.078007\n", " 45.000\n", - " 75.348837\n", + " 5778.125\n", " \n", " \n", " 27\n", @@ -1125,7 +1633,7 @@ " 0.660377\n", " 0.072570\n", " 39.750\n", - " 60.192857\n", + " 5512.500\n", " \n", " \n", " 103\n", @@ -1141,7 +1649,7 @@ " 0.375000\n", " 0.080048\n", " 50.000\n", - " 133.333333\n", + " 2812.500\n", " \n", " \n", " 67\n", @@ -1157,7 +1665,7 @@ " 0.484848\n", " 0.092597\n", " 53.625\n", - " 110.601562\n", + " 5408.000\n", " \n", " \n", " 124\n", @@ -1173,7 +1681,7 @@ " 0.514286\n", " 0.095524\n", " 43.750\n", - " 85.069444\n", + " 4050.000\n", " \n", " \n", " 42\n", @@ -1189,7 +1697,7 @@ " 0.469974\n", " 0.077296\n", " 47.875\n", - " 101.867361\n", + " 4050.000\n", " \n", " \n", " 95\n", @@ -1205,7 +1713,7 @@ " 0.494505\n", " 0.091901\n", " 56.875\n", - " 115.013889\n", + " 6328.125\n", " \n", " \n", " 90\n", @@ -1221,247 +1729,7 @@ " 0.461538\n", " 0.086632\n", " 53.625\n", - " 116.187500\n", - " \n", - " \n", - " 69\n", - " 12.0\n", - " 8\n", - " 350.0\n", - " 160.0\n", - " 4456.0\n", - " 13.5\n", - " 72\n", - " 1\n", - " oldsmobile delta 88 royale\n", - " 0.457143\n", - " 0.078546\n", - " 43.750\n", - " 95.703125\n", - " \n", - " \n", - " 104\n", - " 12.0\n", - " 8\n", - " 400.0\n", - " 167.0\n", - " 4906.0\n", - " 12.5\n", - " 73\n", - " 1\n", - " ford country\n", - " 0.417500\n", - " 0.081533\n", - " 50.000\n", - " 119.760479\n", - " \n", - " \n", - " 106\n", - " 12.0\n", - " 8\n", - " 350.0\n", - " 180.0\n", - " 4499.0\n", - " 12.5\n", - " 73\n", - " 1\n", - " oldsmobile vista cruiser\n", - " 0.514286\n", - " 0.077795\n", - " 43.750\n", - " 85.069444\n", - " \n", - " \n", - " 87\n", - " 13.0\n", - " 8\n", - " 350.0\n", - " 145.0\n", - " 3988.0\n", - " 13.0\n", - " 73\n", - " 1\n", - " chevrolet malibu\n", - " 0.414286\n", - " 0.087763\n", - " 43.750\n", - " 105.603448\n", - " \n", - " \n", - " 73\n", - " 13.0\n", - " 8\n", - " 307.0\n", - " 130.0\n", - " 4098.0\n", - " 14.0\n", - " 72\n", - " 1\n", - " chevrolet chevelle concours (sw)\n", - " 0.423453\n", - " 0.074915\n", - " 38.375\n", - " 90.624038\n", - " \n", - " \n", - " 74\n", - " 13.0\n", - " 8\n", - " 302.0\n", - " 140.0\n", - " 4294.0\n", - " 16.0\n", - " 72\n", - " 1\n", - " ford gran torino (sw)\n", - " 0.463576\n", - " 0.070331\n", - " 37.750\n", - " 81.432143\n", - " \n", - " \n", - " 62\n", - " 13.0\n", - " 8\n", - " 350.0\n", - " 165.0\n", - " 4274.0\n", - " 12.0\n", - " 72\n", - " 1\n", - " chevrolet impala\n", - " 0.471429\n", - " 0.081891\n", - " 43.750\n", - " 92.803030\n", - " \n", - " \n", - " 43\n", - " 13.0\n", - " 8\n", - " 400.0\n", - " 170.0\n", - " 4746.0\n", - " 12.0\n", - " 71\n", - " 1\n", - " ford country squire (sw)\n", - " 0.425000\n", - " 0.084282\n", - " 50.000\n", - " 117.647059\n", - " \n", - " \n", - " 96\n", - " 13.0\n", - " 8\n", - " 360.0\n", - " 175.0\n", - " 3821.0\n", - " 11.0\n", - " 73\n", - " 1\n", - " amc ambassador brougham\n", - " 0.486111\n", - " 0.094216\n", - " 45.000\n", - " 92.571429\n", - " \n", - " \n", - " 94\n", - " 13.0\n", - " 8\n", - " 440.0\n", - " 215.0\n", - " 4735.0\n", - " 11.0\n", - " 73\n", - " 1\n", - " chrysler new yorker brougham\n", - " 0.488636\n", - " 0.092925\n", - " 55.000\n", - " 112.558140\n", - " \n", - " \n", - " 92\n", - " 13.0\n", - " 8\n", - " 351.0\n", - " 158.0\n", - " 4363.0\n", - " 13.0\n", - " 73\n", - " 1\n", - " ford ltd\n", - " 0.450142\n", - " 0.080449\n", - " 43.875\n", - " 97.469146\n", - " \n", - " \n", - " 85\n", - " 13.0\n", - " 8\n", - " 350.0\n", - " 175.0\n", - " 4100.0\n", - " 13.0\n", - " 73\n", - " 1\n", - " buick century 350\n", - " 0.500000\n", - " 0.085366\n", - " 43.750\n", - " 87.500000\n", - " \n", - " \n", - " 137\n", - " 13.0\n", - " 8\n", - " 350.0\n", - " 150.0\n", - " 4699.0\n", - " 14.5\n", - " 74\n", - " 1\n", - " buick century luxus (sw)\n", - " 0.428571\n", - " 0.074484\n", - " 43.750\n", - " 102.083333\n", - " \n", - " \n", - " 44\n", - " 13.0\n", - " 8\n", - " 400.0\n", - " 175.0\n", - " 5140.0\n", - " 12.0\n", - " 71\n", - " 1\n", - " pontiac safari (sw)\n", - " 0.437500\n", - " 0.077821\n", - " 50.000\n", - " 114.285714\n", - " \n", - " \n", - " 215\n", - " 13.0\n", - " 8\n", - " 318.0\n", - " 150.0\n", - " 3755.0\n", - " 14.0\n", - " 76\n", - " 1\n", - " dodge d100\n", - " 0.471698\n", - " 0.084687\n", - " 39.750\n", - " 84.270000\n", + " 4900.500\n", " \n", " \n", "\n", @@ -1479,640 +1747,146 @@ "42 12.0 8 383.0 180.0 4955.0 11.5 \n", "95 12.0 8 455.0 225.0 4951.0 11.0 \n", "90 12.0 8 429.0 198.0 4952.0 11.5 \n", - "69 12.0 8 350.0 160.0 4456.0 13.5 \n", - "104 12.0 8 400.0 167.0 4906.0 12.5 \n", - "106 12.0 8 350.0 180.0 4499.0 12.5 \n", - "87 13.0 8 350.0 145.0 3988.0 13.0 \n", - "73 13.0 8 307.0 130.0 4098.0 14.0 \n", - "74 13.0 8 302.0 140.0 4294.0 16.0 \n", - "62 13.0 8 350.0 165.0 4274.0 12.0 \n", - "43 13.0 8 400.0 170.0 4746.0 12.0 \n", - "96 13.0 8 360.0 175.0 3821.0 11.0 \n", - "94 13.0 8 440.0 215.0 4735.0 11.0 \n", - "92 13.0 8 351.0 158.0 4363.0 13.0 \n", - "85 13.0 8 350.0 175.0 4100.0 13.0 \n", - "137 13.0 8 350.0 150.0 4699.0 14.5 \n", - "44 13.0 8 400.0 175.0 5140.0 12.0 \n", - "215 13.0 8 318.0 150.0 3755.0 14.0 \n", "\n", - " model_year origin car_name efficiency \\\n", - "28 70 1 hi 1200d 0.634868 \n", - "26 70 1 chevy c20 0.651466 \n", - "25 70 1 ford f250 0.597222 \n", - "27 70 1 dodge d200 0.660377 \n", - "103 73 1 chevrolet impala 0.375000 \n", - "67 72 1 mercury marquis 0.484848 \n", - "124 73 1 oldsmobile omega 0.514286 \n", - "42 71 1 dodge monaco (sw) 0.469974 \n", - "95 73 1 buick electra 225 custom 0.494505 \n", - "90 73 1 mercury marquis brougham 0.461538 \n", - "69 72 1 oldsmobile delta 88 royale 0.457143 \n", - "104 73 1 ford country 0.417500 \n", - "106 73 1 oldsmobile vista cruiser 0.514286 \n", - "87 73 1 chevrolet malibu 0.414286 \n", - "73 72 1 chevrolet chevelle concours (sw) 0.423453 \n", - "74 72 1 ford gran torino (sw) 0.463576 \n", - "62 72 1 chevrolet impala 0.471429 \n", - "43 71 1 ford country squire (sw) 0.425000 \n", - "96 73 1 amc ambassador brougham 0.486111 \n", - "94 73 1 chrysler new yorker brougham 0.488636 \n", - "92 73 1 ford ltd 0.450142 \n", - "85 73 1 buick century 350 0.500000 \n", - "137 74 1 buick century luxus (sw) 0.428571 \n", - "44 71 1 pontiac safari (sw) 0.437500 \n", - "215 76 1 dodge d100 0.471698 \n", + " model_year origin car_name efficiency load \\\n", + "28 70 1 hi 1200d 0.634868 0.064243 \n", + "26 70 1 chevy c20 0.651466 0.070155 \n", + "25 70 1 ford f250 0.597222 0.078007 \n", + "27 70 1 dodge d200 0.660377 0.072570 \n", + "103 73 1 chevrolet impala 0.375000 0.080048 \n", + "67 72 1 mercury marquis 0.484848 0.092597 \n", + "124 73 1 oldsmobile omega 0.514286 0.095524 \n", + "42 71 1 dodge monaco (sw) 0.469974 0.077296 \n", + "95 73 1 buick electra 225 custom 0.494505 0.091901 \n", + "90 73 1 mercury marquis brougham 0.461538 0.086632 \n", "\n", - " load bore_size grunt \n", - "28 0.064243 38.000 59.854922 \n", - "26 0.070155 38.375 58.905625 \n", - "25 0.078007 45.000 75.348837 \n", - "27 0.072570 39.750 60.192857 \n", - "103 0.080048 50.000 133.333333 \n", - "67 0.092597 53.625 110.601562 \n", - "124 0.095524 43.750 85.069444 \n", - "42 0.077296 47.875 101.867361 \n", - "95 0.091901 56.875 115.013889 \n", - "90 0.086632 53.625 116.187500 \n", - "69 0.078546 43.750 95.703125 \n", - "104 0.081533 50.000 119.760479 \n", - "106 0.077795 43.750 85.069444 \n", - "87 0.087763 43.750 105.603448 \n", - "73 0.074915 38.375 90.624038 \n", - "74 0.070331 37.750 81.432143 \n", - "62 0.081891 43.750 92.803030 \n", - "43 0.084282 50.000 117.647059 \n", - "96 0.094216 45.000 92.571429 \n", - "94 0.092925 55.000 112.558140 \n", - "92 0.080449 43.875 97.469146 \n", - "85 0.085366 43.750 87.500000 \n", - "137 0.074484 43.750 102.083333 \n", - "44 0.077821 50.000 114.285714 \n", - "215 0.084687 39.750 84.270000 " + " bore_size grunt \n", + "28 38.000 4656.125 \n", + "26 38.375 5000.000 \n", + "25 45.000 5778.125 \n", + "27 39.750 5512.500 \n", + "103 50.000 2812.500 \n", + "67 53.625 5408.000 \n", + "124 43.750 4050.000 \n", + "42 47.875 4050.000 \n", + "95 56.875 6328.125 \n", + "90 53.625 4900.500 " ] }, - "execution_count": 14, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "merged.sort_values('mpg').head(25)" + "merged.sort_values('mpg').head(10)" ] }, { "cell_type": "markdown", - "id": "146d6761-455a-407f-b627-24c13586a88f", + "id": "15d0d27b-5f92-4648-ad5c-35cc811430b3", "metadata": {}, "source": [ - "What vehicles have the Highest MPG?" + "## Some stats" ] }, { "cell_type": "code", - "execution_count": 15, - "id": "38935e91-3877-47a3-96d6-cd54e2704bdb", + "execution_count": 19, + "id": "8710cba8-6b7e-4219-98b9-b7d5a1b4f4b9", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:51.166013Z", - "iopub.status.busy": "2022-07-21T20:29:51.165720Z", - "iopub.status.idle": "2022-07-21T20:29:51.199742Z", - "shell.execute_reply": "2022-07-21T20:29:51.199027Z", - "shell.execute_reply.started": "2022-07-21T20:29:51.165986Z" + "iopub.execute_input": "2022-08-01T04:20:13.132876Z", + "iopub.status.busy": "2022-08-01T04:20:13.132574Z", + "iopub.status.idle": "2022-08-01T04:20:13.142096Z", + "shell.execute_reply": "2022-08-01T04:20:13.141321Z", + "shell.execute_reply.started": "2022-08-01T04:20:13.132851Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean MPG: 23.51\n", + "Mean Weight: 2975.41\n", + "Mean Horsepower: 104.12\n", + "efficiency mean: 0.61\n", + "load mean: 0.06\n", + "bore_size mean: 33.36\n", + "grunt mean: 2060.50\n" + ] + } + ], + "source": [ + "print(f'''Mean MPG: {y.mean():.2f}\n", + "Mean Weight: {merged.weight.mean():.2f}\n", + "Mean Horsepower: {merged.horsepower.mean():.2f}''')\n", + "\n", + "for col in merged.columns[9:]:\n", + " print(f'{col} mean: {merged[col].mean():.2f}')" + ] + }, + { + "cell_type": "markdown", + "id": "0213061d-29c8-4f47-9128-705253bc6320", + "metadata": {}, + "source": [ + "Check Correlation" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "7205bdab-a7df-41b4-9ec0-c1c9e2fe1c03", + "metadata": { + "execution": { + "iopub.execute_input": "2022-08-01T04:20:13.143792Z", + "iopub.status.busy": "2022-08-01T04:20:13.143335Z", + "iopub.status.idle": "2022-08-01T04:20:13.153208Z", + "shell.execute_reply": "2022-08-01T04:20:13.152547Z", + "shell.execute_reply.started": "2022-08-01T04:20:13.143758Z" }, "tags": [] }, "outputs": [ { "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
mpgcylindersdisplacementhorsepowerweightaccelerationmodel_yearorigincar_nameefficiencyloadbore_sizegrunt
32246.6486.065.02110.017.9803mazda glc0.7558140.04075821.50000028.446154
32944.6491.067.01850.013.8803honda civic 1500 gl0.7362640.04918922.75000030.899254
32544.3490.048.02085.021.7802vw rabbit c (diesel)0.5333330.04316522.50000042.187500
39344.0497.052.02130.024.6822vw pickup0.5360820.04554024.25000045.235577
32643.4490.048.02335.023.7802vw dasher (diesel)0.5333330.03854422.50000042.187500
24443.1490.048.01985.021.5782volkswagen rabbit custom diesel0.5333330.04534022.50000042.187500
30941.5498.076.02144.014.7802vw rabbit0.7755100.04570924.50000031.592105
33040.9485.053.51835.017.3802renault lecar deluxe0.6294120.04632221.25000033.761682
32440.8485.065.02110.019.2803datsun 2100.7647060.04028421.25000027.788462
24739.4485.070.02070.018.6783datsun b210 gx0.8235290.04106321.25000025.803571
34239.1479.058.01755.016.9813toyota starlet0.7341770.04501419.75000026.900862
34339.0486.064.01875.016.4811plymouth champ0.7441860.04586721.50000028.890625
31038.1489.060.01968.018.8803toyota corolla tercel0.6741570.04522422.25000033.004167
38438.0491.067.01995.016.2823datsun 310 gx0.7362640.04561422.75000030.899254
38238.0491.067.01965.015.0823honda civic0.7362640.04631022.75000030.899254
38638.06262.085.03015.017.0821oldsmobile cutlass ciera (diesel)0.3244270.08689943.666667134.596078
37738.04105.063.02125.014.7821plymouth horizon miser0.6000000.04941226.25000043.750000
34737.7489.062.02050.017.3813toyota tercel0.6966290.04341522.25000031.939516
30437.3491.069.02130.014.7792fiat strada custom0.7582420.04272322.75000030.003623
31237.2486.065.02019.016.4803datsun 3100.7558140.04259521.50000028.446154
37537.0491.068.02025.018.2823mazda glc custom l0.7472530.04493822.75000030.444853
34637.0485.065.01975.019.4813datsun 210 mpg0.7647060.04303821.25000027.788462
32037.04119.092.02434.015.0803datsun 510 hatchback0.7731090.04889129.75000038.480978
32736.45121.067.02950.019.9802audi 5000s (diesel)0.5537190.04101724.20000043.704478
24836.1491.060.01800.016.4783honda civic cvcc0.6593410.05055622.75000034.504167
\n", - "
" - ], "text/plain": [ - " mpg cylinders displacement horsepower weight acceleration \\\n", - "322 46.6 4 86.0 65.0 2110.0 17.9 \n", - "329 44.6 4 91.0 67.0 1850.0 13.8 \n", - "325 44.3 4 90.0 48.0 2085.0 21.7 \n", - "393 44.0 4 97.0 52.0 2130.0 24.6 \n", - "326 43.4 4 90.0 48.0 2335.0 23.7 \n", - "244 43.1 4 90.0 48.0 1985.0 21.5 \n", - "309 41.5 4 98.0 76.0 2144.0 14.7 \n", - "330 40.9 4 85.0 53.5 1835.0 17.3 \n", - "324 40.8 4 85.0 65.0 2110.0 19.2 \n", - "247 39.4 4 85.0 70.0 2070.0 18.6 \n", - "342 39.1 4 79.0 58.0 1755.0 16.9 \n", - "343 39.0 4 86.0 64.0 1875.0 16.4 \n", - "310 38.1 4 89.0 60.0 1968.0 18.8 \n", - "384 38.0 4 91.0 67.0 1995.0 16.2 \n", - "382 38.0 4 91.0 67.0 1965.0 15.0 \n", - "386 38.0 6 262.0 85.0 3015.0 17.0 \n", - "377 38.0 4 105.0 63.0 2125.0 14.7 \n", - "347 37.7 4 89.0 62.0 2050.0 17.3 \n", - "304 37.3 4 91.0 69.0 2130.0 14.7 \n", - "312 37.2 4 86.0 65.0 2019.0 16.4 \n", - "375 37.0 4 91.0 68.0 2025.0 18.2 \n", - "346 37.0 4 85.0 65.0 1975.0 19.4 \n", - "320 37.0 4 119.0 92.0 2434.0 15.0 \n", - "327 36.4 5 121.0 67.0 2950.0 19.9 \n", - "248 36.1 4 91.0 60.0 1800.0 16.4 \n", - "\n", - " model_year origin car_name efficiency \\\n", - "322 80 3 mazda glc 0.755814 \n", - "329 80 3 honda civic 1500 gl 0.736264 \n", - "325 80 2 vw rabbit c (diesel) 0.533333 \n", - "393 82 2 vw pickup 0.536082 \n", - "326 80 2 vw dasher (diesel) 0.533333 \n", - "244 78 2 volkswagen rabbit custom diesel 0.533333 \n", - "309 80 2 vw rabbit 0.775510 \n", - "330 80 2 renault lecar deluxe 0.629412 \n", - "324 80 3 datsun 210 0.764706 \n", - "247 78 3 datsun b210 gx 0.823529 \n", - "342 81 3 toyota starlet 0.734177 \n", - "343 81 1 plymouth champ 0.744186 \n", - "310 80 3 toyota corolla tercel 0.674157 \n", - "384 82 3 datsun 310 gx 0.736264 \n", - "382 82 3 honda civic 0.736264 \n", - "386 82 1 oldsmobile cutlass ciera (diesel) 0.324427 \n", - "377 82 1 plymouth horizon miser 0.600000 \n", - "347 81 3 toyota tercel 0.696629 \n", - "304 79 2 fiat strada custom 0.758242 \n", - "312 80 3 datsun 310 0.755814 \n", - "375 82 3 mazda glc custom l 0.747253 \n", - "346 81 3 datsun 210 mpg 0.764706 \n", - "320 80 3 datsun 510 hatchback 0.773109 \n", - "327 80 2 audi 5000s (diesel) 0.553719 \n", - "248 78 3 honda civic cvcc 0.659341 \n", - "\n", - " load bore_size grunt \n", - "322 0.040758 21.500000 28.446154 \n", - "329 0.049189 22.750000 30.899254 \n", - "325 0.043165 22.500000 42.187500 \n", - "393 0.045540 24.250000 45.235577 \n", - "326 0.038544 22.500000 42.187500 \n", - "244 0.045340 22.500000 42.187500 \n", - "309 0.045709 24.500000 31.592105 \n", - "330 0.046322 21.250000 33.761682 \n", - "324 0.040284 21.250000 27.788462 \n", - "247 0.041063 21.250000 25.803571 \n", - "342 0.045014 19.750000 26.900862 \n", - "343 0.045867 21.500000 28.890625 \n", - "310 0.045224 22.250000 33.004167 \n", - "384 0.045614 22.750000 30.899254 \n", - "382 0.046310 22.750000 30.899254 \n", - "386 0.086899 43.666667 134.596078 \n", - "377 0.049412 26.250000 43.750000 \n", - "347 0.043415 22.250000 31.939516 \n", - "304 0.042723 22.750000 30.003623 \n", - "312 0.042595 21.500000 28.446154 \n", - "375 0.044938 22.750000 30.444853 \n", - "346 0.043038 21.250000 27.788462 \n", - "320 0.048891 29.750000 38.480978 \n", - "327 0.041017 24.200000 43.704478 \n", - "248 0.050556 22.750000 34.504167 " + "weight -0.832707\n", + "displacement -0.804456\n", + "horsepower -0.777897\n", + "cylinders -0.776090\n", + "bore_size -0.773403\n", + "load -0.724271\n", + "grunt -0.644081\n", + "acceleration 0.420414\n", + "efficiency 0.509309\n", + "origin 0.563833\n", + "model_year 0.580091\n", + "mpg 1.000000\n", + "dtype: float64" ] }, - "execution_count": 15, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "merged.sort_values('mpg',ascending=False).head(25)" + "merged.corrwith(y).sort_values()" + ] + }, + { + "cell_type": "markdown", + "id": "d8889b56-a87c-4901-b654-aaf5a4b9fb14", + "metadata": {}, + "source": [ + "
\n", + "Math says to use weight, displacement, horsepower, cylinders...\n", + "\n", + "While I agree that these are the most important features, there's more to it than just these numbers. Like how a stew is not just a sum of its ingredients." ] }, { @@ -2120,20 +1894,20 @@ "id": "27e89d6b-7603-403c-8235-e9bad49040b3", "metadata": {}, "source": [ - "Pick a few to toss into the model and get some numbers out" + "I'll test both" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 21, "id": "52d0ffbf-55aa-49b9-b99f-8160bf09cc79", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:51.201570Z", - "iopub.status.busy": "2022-07-21T20:29:51.200911Z", - "iopub.status.idle": "2022-07-21T20:29:51.207432Z", - "shell.execute_reply": "2022-07-21T20:29:51.206526Z", - "shell.execute_reply.started": "2022-07-21T20:29:51.201525Z" + "iopub.execute_input": "2022-08-01T04:20:13.154483Z", + "iopub.status.busy": "2022-08-01T04:20:13.154106Z", + "iopub.status.idle": "2022-08-01T04:20:13.159628Z", + "shell.execute_reply": "2022-08-01T04:20:13.158886Z", + "shell.execute_reply.started": "2022-08-01T04:20:13.154458Z" }, "tags": [] }, @@ -2147,7 +1921,7 @@ " dtype='object')" ] }, - "execution_count": 16, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -2158,29 +1932,35 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 22, "id": "6a4a9e48-57a1-48b6-b289-58bc43584112", "metadata": { "execution": { - "iopub.execute_input": "2022-07-21T20:29:51.209219Z", - "iopub.status.busy": "2022-07-21T20:29:51.208620Z", - "iopub.status.idle": "2022-07-21T20:29:51.220516Z", - "shell.execute_reply": "2022-07-21T20:29:51.219766Z", - "shell.execute_reply.started": "2022-07-21T20:29:51.209190Z" + "iopub.execute_input": "2022-08-01T04:20:13.163437Z", + "iopub.status.busy": "2022-08-01T04:20:13.163108Z", + "iopub.status.idle": "2022-08-01T04:20:13.175359Z", + "shell.execute_reply": "2022-08-01T04:20:13.174579Z", + "shell.execute_reply.started": "2022-08-01T04:20:13.163422Z" }, "tags": [] }, "outputs": [], "source": [ - "X = merged[[\\\n", - " 'horsepower', # overall power\n", - " 'bore_size', # \"torque curve\"\n", - " 'grunt',\n", - " 'load', # load\n", - " ]]\n", + "y.to_csv('data/y.csv',index=False)\n", "\n", - "X.to_csv('data/X.csv',index=False)\n", - "y.to_csv('data/y.csv',index=False)" + "merged[[\\\n", + " 'horsepower',\n", + " 'bore_size',\n", + " 'grunt',\n", + " 'load',\n", + " ]].to_csv('data/X_engineered.csv',index=False)\n", + "\n", + "merged[[\\\n", + " 'horsepower',\n", + " 'weight',\n", + " 'displacement',\n", + " 'cylinders',\n", + " ]].to_csv('data/X_straight.csv',index=False)" ] }, {