push push

This commit is contained in:
Adam 2022-07-21 16:31:53 -04:00
commit 96b074e7a3
22 changed files with 5088 additions and 0 deletions

2
.gitignore vendored Normal file
View file

@ -0,0 +1,2 @@
.ipynb_checkpoints
*/.ipynb_checkpoints

807
clean.ipynb Normal file
View file

@ -0,0 +1,807 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "9151a000-1923-408b-bd86-16008dc95f97",
"metadata": {},
"source": [
"[readme](readme.md)"
]
},
{
"cell_type": "markdown",
"id": "cecbac86-abb3-4f6b-a101-2d9324d96274",
"metadata": {},
"source": [
"# Cleaning"
]
},
{
"cell_type": "markdown",
"id": "b67cb510-2df0-4ce4-a033-473710fdc749",
"metadata": {},
"source": [
"Load file and set column names"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "3c4bfade-d06d-4887-9eb4-ec7f5bc61625",
"metadata": {
"execution": {
"iopub.execute_input": "2022-07-21T20:29:36.887038Z",
"iopub.status.busy": "2022-07-21T20:29:36.886672Z",
"iopub.status.idle": "2022-07-21T20:29:37.222976Z",
"shell.execute_reply": "2022-07-21T20:29:37.222218Z",
"shell.execute_reply.started": "2022-07-21T20:29:36.886962Z"
},
"tags": []
},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"df = pd.read_csv('data/auto-mpg.data',header=None,delim_whitespace=True)\n",
"df.columns = ['mpg','cylinders','displacement','horsepower','weight',\n",
" 'acceleration','model_year','origin','car_name']"
]
},
{
"cell_type": "markdown",
"id": "fdcec7e3-c65e-4d66-9a10-b500fb940234",
"metadata": {},
"source": [
"Attribute Information:\n",
"\n",
" 1. mpg: continuous\n",
" 2. cylinders: multi-valued discrete\n",
" 3. displacement: continuous\n",
" 4. horsepower: continuous\n",
" 5. weight: continuous\n",
" 6. acceleration: continuous\n",
" 7. model year: multi-valued discrete\n",
" 8. origin: multi-valued discrete\n",
" 9. car name: string (unique for each instance)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "62bbb6bd-b5b3-4d54-a132-23cd367c4570",
"metadata": {
"execution": {
"iopub.execute_input": "2022-07-21T20:29:37.225459Z",
"iopub.status.busy": "2022-07-21T20:29:37.224901Z",
"iopub.status.idle": "2022-07-21T20:29:37.237624Z",
"shell.execute_reply": "2022-07-21T20:29:37.236773Z",
"shell.execute_reply.started": "2022-07-21T20:29:37.225432Z"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 398 entries, 0 to 397\n",
"Data columns (total 9 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 mpg 398 non-null float64\n",
" 1 cylinders 398 non-null int64 \n",
" 2 displacement 398 non-null float64\n",
" 3 horsepower 398 non-null object \n",
" 4 weight 398 non-null float64\n",
" 5 acceleration 398 non-null float64\n",
" 6 model_year 398 non-null int64 \n",
" 7 origin 398 non-null int64 \n",
" 8 car_name 398 non-null object \n",
"dtypes: float64(4), int64(3), object(2)\n",
"memory usage: 28.1+ KB\n"
]
}
],
"source": [
"df.info()"
]
},
{
"cell_type": "markdown",
"id": "6a4028ed-eda3-4c50-aed0-d9503d41a8e1",
"metadata": {},
"source": [
"Why is horsepower not a number?"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "58fa2876-4ccb-4ef5-bc16-d25b74efb457",
"metadata": {
"execution": {
"iopub.execute_input": "2022-07-21T20:29:37.239126Z",
"iopub.status.busy": "2022-07-21T20:29:37.238760Z",
"iopub.status.idle": "2022-07-21T20:29:37.252035Z",
"shell.execute_reply": "2022-07-21T20:29:37.251217Z",
"shell.execute_reply.started": "2022-07-21T20:29:37.239098Z"
},
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"array(['130.0', '165.0', '150.0', '140.0', '198.0', '220.0', '215.0',\n",
" '225.0', '190.0', '170.0', '160.0', '95.00', '97.00', '85.00',\n",
" '88.00', '46.00', '87.00', '90.00', '113.0', '200.0', '210.0',\n",
" '193.0', '?', '100.0', '105.0', '175.0', '153.0', '180.0', '110.0',\n",
" '72.00', '86.00', '70.00', '76.00', '65.00', '69.00', '60.00',\n",
" '80.00', '54.00', '208.0', '155.0', '112.0', '92.00', '145.0',\n",
" '137.0', '158.0', '167.0', '94.00', '107.0', '230.0', '49.00',\n",
" '75.00', '91.00', '122.0', '67.00', '83.00', '78.00', '52.00',\n",
" '61.00', '93.00', '148.0', '129.0', '96.00', '71.00', '98.00',\n",
" '115.0', '53.00', '81.00', '79.00', '120.0', '152.0', '102.0',\n",
" '108.0', '68.00', '58.00', '149.0', '89.00', '63.00', '48.00',\n",
" '66.00', '139.0', '103.0', '125.0', '133.0', '138.0', '135.0',\n",
" '142.0', '77.00', '62.00', '132.0', '84.00', '64.00', '74.00',\n",
" '116.0', '82.00'], dtype=object)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.horsepower.unique()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "2d99ea58-ca51-4461-a127-c6b389b056a1",
"metadata": {
"execution": {
"iopub.execute_input": "2022-07-21T20:29:37.253416Z",
"iopub.status.busy": "2022-07-21T20:29:37.253082Z",
"iopub.status.idle": "2022-07-21T20:29:37.271785Z",
"shell.execute_reply": "2022-07-21T20:29:37.271054Z",
"shell.execute_reply.started": "2022-07-21T20:29:37.253389Z"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>mpg</th>\n",
" <th>cylinders</th>\n",
" <th>displacement</th>\n",
" <th>horsepower</th>\n",
" <th>weight</th>\n",
" <th>acceleration</th>\n",
" <th>model_year</th>\n",
" <th>origin</th>\n",
" <th>car_name</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>32</th>\n",
" <td>25.0</td>\n",
" <td>4</td>\n",
" <td>98.0</td>\n",
" <td>?</td>\n",
" <td>2046.0</td>\n",
" <td>19.0</td>\n",
" <td>71</td>\n",
" <td>1</td>\n",
" <td>ford pinto</td>\n",
" </tr>\n",
" <tr>\n",
" <th>126</th>\n",
" <td>21.0</td>\n",
" <td>6</td>\n",
" <td>200.0</td>\n",
" <td>?</td>\n",
" <td>2875.0</td>\n",
" <td>17.0</td>\n",
" <td>74</td>\n",
" <td>1</td>\n",
" <td>ford maverick</td>\n",
" </tr>\n",
" <tr>\n",
" <th>330</th>\n",
" <td>40.9</td>\n",
" <td>4</td>\n",
" <td>85.0</td>\n",
" <td>?</td>\n",
" <td>1835.0</td>\n",
" <td>17.3</td>\n",
" <td>80</td>\n",
" <td>2</td>\n",
" <td>renault lecar deluxe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>336</th>\n",
" <td>23.6</td>\n",
" <td>4</td>\n",
" <td>140.0</td>\n",
" <td>?</td>\n",
" <td>2905.0</td>\n",
" <td>14.3</td>\n",
" <td>80</td>\n",
" <td>1</td>\n",
" <td>ford mustang cobra</td>\n",
" </tr>\n",
" <tr>\n",
" <th>354</th>\n",
" <td>34.5</td>\n",
" <td>4</td>\n",
" <td>100.0</td>\n",
" <td>?</td>\n",
" <td>2320.0</td>\n",
" <td>15.8</td>\n",
" <td>81</td>\n",
" <td>2</td>\n",
" <td>renault 18i</td>\n",
" </tr>\n",
" <tr>\n",
" <th>374</th>\n",
" <td>23.0</td>\n",
" <td>4</td>\n",
" <td>151.0</td>\n",
" <td>?</td>\n",
" <td>3035.0</td>\n",
" <td>20.5</td>\n",
" <td>82</td>\n",
" <td>1</td>\n",
" <td>amc concord dl</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" mpg cylinders displacement horsepower weight acceleration \\\n",
"32 25.0 4 98.0 ? 2046.0 19.0 \n",
"126 21.0 6 200.0 ? 2875.0 17.0 \n",
"330 40.9 4 85.0 ? 1835.0 17.3 \n",
"336 23.6 4 140.0 ? 2905.0 14.3 \n",
"354 34.5 4 100.0 ? 2320.0 15.8 \n",
"374 23.0 4 151.0 ? 3035.0 20.5 \n",
"\n",
" model_year origin car_name \n",
"32 71 1 ford pinto \n",
"126 74 1 ford maverick \n",
"330 80 2 renault lecar deluxe \n",
"336 80 1 ford mustang cobra \n",
"354 81 2 renault 18i \n",
"374 82 1 amc concord dl "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[df.horsepower == '?']"
]
},
{
"cell_type": "markdown",
"id": "498d069d-b95e-43d6-bd3d-4b707fdd9635",
"metadata": {},
"source": [
"I'll fill in what I can find online"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e53a2eaf-a8f9-4d7e-bf8b-07a125cf6f06",
"metadata": {
"execution": {
"iopub.execute_input": "2022-07-21T20:29:37.273324Z",
"iopub.status.busy": "2022-07-21T20:29:37.272853Z",
"iopub.status.idle": "2022-07-21T20:29:37.278574Z",
"shell.execute_reply": "2022-07-21T20:29:37.277496Z",
"shell.execute_reply.started": "2022-07-21T20:29:37.273297Z"
},
"tags": []
},
"outputs": [],
"source": [
"# 1971 pinto kent I4\n",
"df.at[32,'horsepower'] = '75.0'\n",
"# 1974 maverick 200 I6\n",
"df.at[126,'horsepower'] = '85.0'\n",
"# 1980 renault lecar deluxe 85ci I4\n",
"df.at[330,'horsepower'] = '53.5'\n",
"# 1980 ford mustang cobra\n",
"# they seem confused between 2 different models\n",
"# 1981 renault 18i\n",
"df.at[354,'horsepower'] = '81.5'\n",
"#1982 AMC concord dl 151\n",
"df.at[374,'horsepower'] = '90'"
]
},
{
"cell_type": "markdown",
"id": "68d959c5-9628-437f-8f3f-0b4c7002b1f0",
"metadata": {},
"source": [
"We'll ignore the mustang because it's too far off from realistic, it looks like they got confused between two different models.\n",
"\n",
"Anyway, drop all '?' horsepower"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "10400330-e6aa-43e0-910f-f97869c23d0f",
"metadata": {
"execution": {
"iopub.execute_input": "2022-07-21T20:29:37.280095Z",
"iopub.status.busy": "2022-07-21T20:29:37.279777Z",
"iopub.status.idle": "2022-07-21T20:29:37.286985Z",
"shell.execute_reply": "2022-07-21T20:29:37.286202Z",
"shell.execute_reply.started": "2022-07-21T20:29:37.280060Z"
},
"tags": []
},
"outputs": [],
"source": [
"df.drop(df[df.horsepower == '?'].index,inplace=True)\n",
"df['horsepower'] = df.horsepower.astype(float)\n",
"df.reset_index(inplace=True,drop=True)"
]
},
{
"cell_type": "markdown",
"id": "b2afc76d-c428-4b81-9882-5ea19ecd04bb",
"metadata": {},
"source": [
"And set to floats, like the rest"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e0fd9a7b-6cdf-4346-8c8d-6c5f36e167f6",
"metadata": {
"execution": {
"iopub.execute_input": "2022-07-21T20:29:37.289881Z",
"iopub.status.busy": "2022-07-21T20:29:37.289472Z",
"iopub.status.idle": "2022-07-21T20:29:37.301335Z",
"shell.execute_reply": "2022-07-21T20:29:37.300537Z",
"shell.execute_reply.started": "2022-07-21T20:29:37.289852Z"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 397 entries, 0 to 396\n",
"Data columns (total 9 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 mpg 397 non-null float64\n",
" 1 cylinders 397 non-null int64 \n",
" 2 displacement 397 non-null float64\n",
" 3 horsepower 397 non-null float64\n",
" 4 weight 397 non-null float64\n",
" 5 acceleration 397 non-null float64\n",
" 6 model_year 397 non-null int64 \n",
" 7 origin 397 non-null int64 \n",
" 8 car_name 397 non-null object \n",
"dtypes: float64(5), int64(3), object(1)\n",
"memory usage: 28.0+ KB\n"
]
}
],
"source": [
"df.info()"
]
},
{
"cell_type": "markdown",
"id": "097c4cec-eb77-46f6-8eef-89eb7c47b425",
"metadata": {},
"source": [
"Looks good"
]
},
{
"cell_type": "markdown",
"id": "151e5f1b-6409-4972-9c79-a26d132eedf5",
"metadata": {},
"source": [
"### Min/Max to check range"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "769f33e7-2f2e-46e8-b6dd-8f8fb79d13b7",
"metadata": {
"execution": {
"iopub.execute_input": "2022-07-21T20:29:37.303380Z",
"iopub.status.busy": "2022-07-21T20:29:37.302680Z",
"iopub.status.idle": "2022-07-21T20:29:37.310508Z",
"shell.execute_reply": "2022-07-21T20:29:37.309738Z",
"shell.execute_reply.started": "2022-07-21T20:29:37.303336Z"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"mpg\n",
"Min: 9.0 \n",
"Max: 46.6\n",
"\n",
"cylinders\n",
"Min: 3 \n",
"Max: 8\n",
"\n",
"displacement\n",
"Min: 68.0 \n",
"Max: 455.0\n",
"\n",
"horsepower\n",
"Min: 46.0 \n",
"Max: 230.0\n",
"\n",
"weight\n",
"Min: 1613.0 \n",
"Max: 5140.0\n",
"\n",
"acceleration\n",
"Min: 8.0 \n",
"Max: 24.8\n",
"\n",
"model_year\n",
"Min: 70 \n",
"Max: 82\n",
"\n",
"origin\n",
"Min: 1 \n",
"Max: 3\n",
"\n"
]
}
],
"source": [
"for col in df.columns[:-1]:\n",
" print(f'''{col}\n",
"Min: {df[col].min()} \n",
"Max: {df[col].max()}\n",
"''')"
]
},
{
"cell_type": "markdown",
"id": "59641984-e266-4eaa-a90d-af266cb95936",
"metadata": {},
"source": [
"All of this makes sense"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "7bac1a71-53d2-4081-b566-244bccd3a3c6",
"metadata": {
"execution": {
"iopub.execute_input": "2022-07-21T20:29:37.312020Z",
"iopub.status.busy": "2022-07-21T20:29:37.311631Z",
"iopub.status.idle": "2022-07-21T20:29:37.319881Z",
"shell.execute_reply": "2022-07-21T20:29:37.318953Z",
"shell.execute_reply.started": "2022-07-21T20:29:37.311992Z"
},
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"array(['datsun pl510', 'amc gremlin', 'chevrolet chevelle malibu',\n",
" 'chevrolet impala', 'ford galaxie 500', 'plymouth fury iii',\n",
" 'pontiac catalina', 'amc matador', 'amc hornet', 'ford maverick',\n",
" 'plymouth duster', 'chevrolet vega', 'ford pinto',\n",
" 'toyota corolla 1200', 'ford gran torino', 'ford gran torino (sw)',\n",
" 'amc matador (sw)', 'opel manta', 'toyota corona', 'fiat 128',\n",
" 'chevrolet nova', 'ford ltd', 'volkswagen dasher', 'datsun 710',\n",
" 'audi 100ls', 'peugeot 504', 'saab 99le', 'opel 1900',\n",
" 'dodge colt', 'chevrolet chevelle malibu classic',\n",
" 'plymouth valiant', 'honda civic', 'volkswagen rabbit',\n",
" 'toyota corolla', 'toyota mark ii', 'chevrolet caprice classic',\n",
" 'chevrolet chevette', 'honda civic cvcc', 'chevrolet malibu',\n",
" 'chevrolet monte carlo landau', 'buick estate wagon (sw)',\n",
" 'ford country squire (sw)', 'oldsmobile cutlass salon brougham',\n",
" 'vw rabbit', 'chevrolet citation', 'amc concord', 'dodge aspen',\n",
" 'datsun 210', 'subaru dl', 'buick skylark', 'plymouth reliant',\n",
" 'subaru', 'mazda 626', 'buick century', 'pontiac phoenix',\n",
" 'honda accord'], dtype=object)"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[df.car_name.duplicated()].car_name.unique()"
]
},
{
"cell_type": "markdown",
"id": "81b8d5a5-d323-4a70-b951-b2fe4fb1e35f",
"metadata": {},
"source": [
"There are some duplicate car names, honestly I wish there were more. If I had a bunch of data with lots of duplicate car names it'd actually be easier to predict MPG I imagine, I'll say more on this later but there are some big factors that aren't represented here."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "87715776-3634-4ca7-bbb4-e04633fe4791",
"metadata": {
"execution": {
"iopub.execute_input": "2022-07-21T20:29:37.321678Z",
"iopub.status.busy": "2022-07-21T20:29:37.321045Z",
"iopub.status.idle": "2022-07-21T20:29:37.354573Z",
"shell.execute_reply": "2022-07-21T20:29:37.353866Z",
"shell.execute_reply.started": "2022-07-21T20:29:37.321651Z"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>mpg</th>\n",
" <th>cylinders</th>\n",
" <th>displacement</th>\n",
" <th>horsepower</th>\n",
" <th>weight</th>\n",
" <th>acceleration</th>\n",
" <th>model_year</th>\n",
" <th>origin</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>397.000000</td>\n",
" <td>397.000000</td>\n",
" <td>397.000000</td>\n",
" <td>397.000000</td>\n",
" <td>397.000000</td>\n",
" <td>397.000000</td>\n",
" <td>397.000000</td>\n",
" <td>397.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>23.514358</td>\n",
" <td>5.458438</td>\n",
" <td>193.560453</td>\n",
" <td>104.123426</td>\n",
" <td>2970.589421</td>\n",
" <td>15.571285</td>\n",
" <td>76.000000</td>\n",
" <td>1.574307</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>7.825846</td>\n",
" <td>1.701577</td>\n",
" <td>104.366796</td>\n",
" <td>38.396800</td>\n",
" <td>847.903955</td>\n",
" <td>2.760431</td>\n",
" <td>3.696846</td>\n",
" <td>0.802549</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>9.000000</td>\n",
" <td>3.000000</td>\n",
" <td>68.000000</td>\n",
" <td>46.000000</td>\n",
" <td>1613.000000</td>\n",
" <td>8.000000</td>\n",
" <td>70.000000</td>\n",
" <td>1.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>17.500000</td>\n",
" <td>4.000000</td>\n",
" <td>104.000000</td>\n",
" <td>75.000000</td>\n",
" <td>2223.000000</td>\n",
" <td>13.800000</td>\n",
" <td>73.000000</td>\n",
" <td>1.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>23.000000</td>\n",
" <td>4.000000</td>\n",
" <td>151.000000</td>\n",
" <td>92.000000</td>\n",
" <td>2800.000000</td>\n",
" <td>15.500000</td>\n",
" <td>76.000000</td>\n",
" <td>1.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>29.000000</td>\n",
" <td>8.000000</td>\n",
" <td>262.000000</td>\n",
" <td>125.000000</td>\n",
" <td>3609.000000</td>\n",
" <td>17.200000</td>\n",
" <td>79.000000</td>\n",
" <td>2.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>46.600000</td>\n",
" <td>8.000000</td>\n",
" <td>455.000000</td>\n",
" <td>230.000000</td>\n",
" <td>5140.000000</td>\n",
" <td>24.800000</td>\n",
" <td>82.000000</td>\n",
" <td>3.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" mpg cylinders displacement horsepower weight \\\n",
"count 397.000000 397.000000 397.000000 397.000000 397.000000 \n",
"mean 23.514358 5.458438 193.560453 104.123426 2970.589421 \n",
"std 7.825846 1.701577 104.366796 38.396800 847.903955 \n",
"min 9.000000 3.000000 68.000000 46.000000 1613.000000 \n",
"25% 17.500000 4.000000 104.000000 75.000000 2223.000000 \n",
"50% 23.000000 4.000000 151.000000 92.000000 2800.000000 \n",
"75% 29.000000 8.000000 262.000000 125.000000 3609.000000 \n",
"max 46.600000 8.000000 455.000000 230.000000 5140.000000 \n",
"\n",
" acceleration model_year origin \n",
"count 397.000000 397.000000 397.000000 \n",
"mean 15.571285 76.000000 1.574307 \n",
"std 2.760431 3.696846 0.802549 \n",
"min 8.000000 70.000000 1.000000 \n",
"25% 13.800000 73.000000 1.000000 \n",
"50% 15.500000 76.000000 1.000000 \n",
"75% 17.200000 79.000000 2.000000 \n",
"max 24.800000 82.000000 3.000000 "
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.describe()"
]
},
{
"cell_type": "markdown",
"id": "90fe9344-fe47-4503-be59-74d9d38cf1d3",
"metadata": {},
"source": [
"Everything looks proportional"
]
},
{
"cell_type": "markdown",
"id": "042416c1-0e56-4269-96c8-6926392e11e7",
"metadata": {},
"source": [
"### Save"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "b3b42cca-6960-4d06-b7c4-1570f09e9fe0",
"metadata": {
"execution": {
"iopub.execute_input": "2022-07-21T20:29:37.355994Z",
"iopub.status.busy": "2022-07-21T20:29:37.355617Z",
"iopub.status.idle": "2022-07-21T20:29:37.364909Z",
"shell.execute_reply": "2022-07-21T20:29:37.364122Z",
"shell.execute_reply.started": "2022-07-21T20:29:37.355966Z"
},
"tags": []
},
"outputs": [],
"source": [
"df.to_csv('data/clean.csv', index=False)"
]
},
{
"cell_type": "markdown",
"id": "59524851-efe5-4042-8eee-d67038a13a77",
"metadata": {},
"source": [
"[EDA](eda.ipynb)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

398
data/X.csv Normal file
View file

@ -0,0 +1,398 @@
horsepower,bore_size,grunt,load
130.0,38.375,90.62403846153846,0.08761415525114155
165.0,43.75,92.80303030303031,0.09477389656106147
150.0,39.75,84.27,0.09254947613504075
150.0,38.0,77.01333333333334,0.08855228662976988
140.0,37.75,81.43214285714286,0.08756161206146709
198.0,53.625,116.1875,0.09882515549412578
220.0,56.75,117.11136363636363,0.10427193385392743
215.0,55.0,112.55813953488372,0.10204081632653061
225.0,56.875,115.01388888888889,0.10282485875706214
190.0,48.75,100.06578947368422,0.1012987012987013
170.0,47.875,107.85955882352941,0.10749368509682851
160.0,42.5,90.3125,0.0942089221390967
150.0,50.0,133.33333333333334,0.10635469290082425
225.0,56.875,115.01388888888889,0.091
95.0,28.25,33.60263157894737,0.047639123102866776
95.0,33.0,68.77894736842106,0.06989057536180728
97.0,33.166666666666664,68.04295532646047,0.07173756308579668
85.0,33.333333333333336,78.43137254901961,0.07730962504831851
88.0,24.25,26.730113636363637,0.045539906103286384
46.0,24.25,51.13586956521739,0.05286103542234333
87.0,27.5,34.770114942528735,0.04116766467065868
90.0,26.75,31.802777777777777,0.044032921810699586
95.0,26.0,28.46315789473684,0.043789473684210524
113.0,30.25,32.39159292035398,0.05416293643688451
90.0,33.166666666666664,73.33518518518518,0.07515105740181269
215.0,45.0,75.34883720930233,0.0780065005417118
200.0,38.375,58.905625,0.07015539305301645
210.0,39.75,60.19285714285714,0.07256960292104062
193.0,38.0,59.85492227979275,0.06424344885883347
88.0,24.25,26.730113636363637,0.045539906103286384
90.0,35.0,54.44444444444444,0.061837455830388695
95.0,28.25,33.60263157894737,0.050718132854578095
75.0,24.5,32.013333333333335,0.047898338220918865
100.0,38.666666666666664,89.70666666666666,0.08807896735003796
105.0,37.5,80.35714285714286,0.06542599592904914
100.0,41.666666666666664,104.16666666666666,0.07509762691498949
88.0,41.666666666666664,118.37121212121212,0.07571168988491823
100.0,38.666666666666664,89.70666666666666,0.0705596107055961
165.0,43.75,92.80303030303031,0.08315514373960561
175.0,50.0,114.28571428571429,0.08960573476702509
153.0,43.875,100.65441176470588,0.08449687048627828
150.0,39.75,84.27,0.07763671875
180.0,47.875,101.86736111111111,0.07729566094853683
170.0,50.0,117.64705882352942,0.08428150021070376
175.0,50.0,114.28571428571429,0.07782101167315175
110.0,43.0,100.85454545454546,0.08710330857528698
72.0,35.0,68.05555555555556,0.05813953488372093
100.0,41.666666666666664,104.16666666666666,0.07617306520414381
88.0,41.666666666666664,118.37121212121212,0.07964319847085059
86.0,30.5,43.26744186046512,0.054954954954954956
90.0,29.0,37.37777777777778,0.054639660857277436
70.0,19.75,22.289285714285715,0.038090646094503376
76.0,22.0,25.473684210526315,0.04261501210653753
65.0,17.75,19.388461538461538,0.04004512126339538
69.0,18.0,18.782608695652172,0.044637321760694355
60.0,24.25,39.204166666666666,0.05288985823336968
70.0,22.75,29.575,0.046547314578005115
95.0,28.25,33.60263157894737,0.04960491659350307
80.0,24.375,29.70703125,0.04586077140169332
54.0,24.25,43.56018518518518,0.04303460514640639
90.0,35.0,54.44444444444444,0.05813953488372093
86.0,30.5,43.26744186046512,0.05480682839173405
165.0,43.75,92.80303030303031,0.08189050070191858
175.0,50.0,114.28571428571429,0.09122006841505131
150.0,39.75,84.27,0.07690447400241839
153.0,43.875,100.65441176470588,0.08500847662872366
150.0,38.0,77.01333333333334,0.08278867102396514
208.0,53.625,110.6015625,0.09259658968271099
155.0,43.75,98.79032258064517,0.07774322523322967
160.0,43.75,95.703125,0.07854578096947935
190.0,50.0,105.26315789473685,0.09045680687471733
97.0,23.333333333333332,16.83848797250859,0.030042918454935622
150.0,38.0,77.01333333333334,0.07810894141829394
130.0,38.375,90.62403846153846,0.0749145924841386
140.0,37.75,81.43214285714286,0.0703306939916162
150.0,39.75,84.27,0.07799852832965416
112.0,30.25,32.68080357142857,0.04125468803273099
76.0,30.25,48.161184210526315,0.04818797291915571
87.0,30.0,41.37931034482759,0.04028197381671702
69.0,24.0,33.391304347826086,0.0438556418455916
86.0,30.5,43.26744186046512,0.05093945720250522
92.0,24.25,25.567934782608695,0.042395104895104896
97.0,30.0,37.113402061855666,0.047885075818036714
80.0,24.5,30.0125,0.04528650646950092
88.0,24.25,26.730113636363637,0.04619047619047619
175.0,43.75,87.5,0.08536585365853659
150.0,38.0,77.01333333333334,0.08278867102396514
145.0,43.75,105.60344827586206,0.08776328986960882
137.0,37.75,83.21532846715328,0.07471548738248392
150.0,39.75,84.27,0.08419380460683082
198.0,53.625,116.1875,0.08663166397415185
150.0,50.0,133.33333333333334,0.08960573476702509
158.0,43.875,97.46914556962025,0.08044923217969287
150.0,39.75,84.27,0.07505310361104556
215.0,55.0,112.55813953488372,0.09292502639915523
225.0,56.875,115.01388888888889,0.09190062613613412
175.0,45.0,92.57142857142857,0.0942161737764983
105.0,37.5,80.35714285714286,0.07209227811598846
100.0,41.666666666666664,104.16666666666666,0.0762660158633313
100.0,38.666666666666664,89.70666666666666,0.07877758913412564
88.0,41.666666666666664,118.37121212121212,0.08275405494869248
95.0,33.0,68.77894736842106,0.06818181818181818
46.0,24.25,51.13586956521739,0.04974358974358974
150.0,50.0,133.33333333333334,0.08004802881729037
167.0,50.0,119.76047904191617,0.08153281695882593
170.0,45.0,95.29411764705883,0.07735281478298238
180.0,43.75,85.06944444444446,0.07779506557012669
100.0,38.666666666666664,89.70666666666666,0.08318393689494442
88.0,24.25,26.730113636363637,0.04256252742430891
72.0,35.0,68.05555555555556,0.05830903790087463
94.0,27.0,31.02127659574468,0.04539722572509458
90.0,23.333333333333332,18.148148148148145,0.03295668549905838
85.0,30.5,43.77647058823529,0.05281385281385281
107.0,25.833333333333332,37.4221183800623,0.06270226537216829
90.0,24.5,26.677777777777777,0.04326710816777042
145.0,43.75,105.60344827586206,0.08574228319451249
230.0,50.0,86.95652173913044,0.09350163627863488
49.0,17.0,23.591836734693878,0.03642206748794858
75.0,29.0,44.85333333333333,0.05375347544022243
91.0,28.5,35.7032967032967,0.044151820294345466
112.0,30.25,32.68080357142857,0.04218967921896792
150.0,39.75,84.27,0.09355692850838482
110.0,30.25,33.275,0.04548872180451128
122.0,26.0,33.24590163934426,0.055575347345920914
180.0,43.75,85.06944444444446,0.09552401746724891
95.0,33.0,68.77894736842106,0.06382978723404255
85.0,33.333333333333336,78.43137254901961,0.06956521739130435
100.0,38.666666666666664,89.70666666666666,0.07997242330230955
100.0,41.666666666666664,104.16666666666666,0.0749400479616307
67.0,19.75,23.287313432835823,0.04051282051282051
80.0,30.5,46.5125,0.049775601795185635
65.0,17.75,19.388461538461538,0.03867102396514161
75.0,35.0,65.33333333333333,0.05507474429583006
100.0,41.666666666666664,104.16666666666666,0.06612007405448295
110.0,43.0,100.85454545454546,0.0710352422907489
105.0,37.5,80.35714285714286,0.06227511763077775
140.0,37.75,81.43214285714286,0.07292924414392658
150.0,43.75,102.08333333333334,0.07448393275164929
150.0,39.75,84.27,0.0713484406551492
140.0,37.75,81.43214285714286,0.06511427339370418
150.0,38.0,77.01333333333334,0.0714117923420249
83.0,24.5,28.927710843373493,0.04416403785488959
67.0,19.75,23.287313432835823,0.040244523688232295
78.0,24.25,30.15705128205128,0.04217391304347826
52.0,19.0,27.76923076923077,0.04608853850818678
61.0,20.75,28.233606557377048,0.04143784323514728
75.0,22.5,27.0,0.042352941176470586
75.0,22.5,27.0,0.04269449715370019
75.0,29.0,44.85333333333333,0.051647373107747106
97.0,30.0,37.113402061855666,0.04821213338690237
93.0,27.0,31.354838709677416,0.0451693851944793
67.0,19.75,23.287313432835823,0.0395
95.0,37.5,88.8157894736842,0.06893382352941177
105.0,41.666666666666664,99.2063492063492,0.07227522405319456
72.0,41.666666666666664,144.67592592592592,0.07284382284382285
72.0,41.666666666666664,144.67592592592592,0.07916402786573781
170.0,50.0,117.64705882352942,0.0856898029134533
145.0,43.75,105.60344827586206,0.07882882882882883
150.0,39.75,84.27,0.0706980880391285
148.0,43.875,104.05489864864865,0.07537041013528023
110.0,38.5,80.85000000000001,0.05912464806757103
105.0,41.666666666666664,99.2063492063492,0.06415191172696946
110.0,43.0,100.85454545454546,0.06916890080428954
95.0,37.5,88.8157894736842,0.059445178335535004
110.0,38.5,80.85000000000001,0.07601184600197433
110.0,32.75,78.00454545454546,0.08134119838559453
129.0,37.75,88.37596899224806,0.09529820132533923
75.0,24.25,31.363333333333333,0.04467987102717642
83.0,35.0,59.036144578313255,0.05305039787798409
100.0,38.666666666666664,89.70666666666666,0.07961564859299931
78.0,35.0,62.82051282051282,0.05401234567901234
96.0,33.5,46.76041666666667,0.049592894152479645
71.0,22.5,28.52112676056338,0.04048582995951417
97.0,29.75,36.49742268041237,0.04675834970530452
97.0,28.5,50.24226804123711,0.05730563002680965
70.0,22.5,28.928571428571427,0.04646360351058337
90.0,38.666666666666664,99.67407407407407,0.07225163500467144
95.0,28.75,34.80263157894737,0.042687453600593915
88.0,30.0,40.909090909090914,0.040581670612106865
98.0,30.25,37.349489795918366,0.04108658743633277
115.0,30.25,31.828260869565216,0.04530138524897042
53.0,22.75,39.06132075471698,0.050696378830083565
86.0,26.75,33.281976744186046,0.04342532467532467
81.0,29.0,41.53086419753086,0.05225225225225225
92.0,35.0,53.26086956521739,0.05443234836702955
79.0,24.5,30.39240506329114,0.043458980044345896
83.0,25.25,30.725903614457835,0.04586739327883742
140.0,38.125,83.05803571428571,0.07236061684460261
150.0,39.75,84.27,0.07589498806682578
120.0,38.0,96.26666666666667,0.0767289247854619
152.0,43.875,101.31661184210526,0.08327402135231317
100.0,37.5,84.375,0.06959480358799876
105.0,41.666666666666664,99.2063492063492,0.07456009543692216
81.0,33.333333333333336,82.3045267489712,0.06640106241699867
90.0,38.666666666666664,99.67407407407407,0.07520259319286872
52.0,21.25,34.73557692307692,0.04176904176904177
60.0,24.5,40.016666666666666,0.04528650646950092
70.0,22.5,28.928571428571427,0.04646360351058337
53.0,22.75,39.06132075471698,0.050696378830083565
100.0,37.5,84.375,0.06162695152013147
78.0,41.666666666666664,133.54700854700855,0.06994963626189143
110.0,41.666666666666664,94.69696969696969,0.06858710562414266
95.0,43.0,116.77894736842106,0.08080175383651739
71.0,24.25,33.13028169014085,0.05315068493150685
70.0,21.25,25.80357142857143,0.04271356783919598
75.0,24.25,31.363333333333333,0.04501160092807425
72.0,35.0,68.05555555555556,0.05458089668615984
102.0,32.5,41.42156862745098,0.04126984126984127
150.0,39.75,84.27,0.08071065989847716
88.0,30.0,40.909090909090914,0.03669724770642202
108.0,26.0,37.55555555555556,0.05324232081911263
120.0,28.0,39.199999999999996,0.04397905759162304
180.0,43.75,85.06944444444446,0.07990867579908675
145.0,43.75,105.60344827586206,0.08631319358816276
130.0,37.75,87.69615384615385,0.07803617571059432
150.0,39.75,84.27,0.08468708388814913
68.0,24.5,35.30882352941177,0.04792176039119805
80.0,27.75,38.503125000000004,0.051508120649651976
58.0,19.75,26.900862068965516,0.04328767123287671
96.0,30.5,38.760416666666664,0.05304347826086957
70.0,21.25,25.80357142857143,0.043701799485861184
145.0,38.125,80.19396551724138,0.07860824742268041
110.0,32.5,76.81818181818181,0.06403940886699508
145.0,39.75,87.17586206896551,0.07681159420289856
130.0,37.75,87.69615384615385,0.07031431897555297
110.0,41.666666666666664,94.69696969696969,0.07102272727272728
105.0,38.5,84.7,0.06744525547445256
100.0,37.5,84.375,0.06198347107438017
98.0,41.666666666666664,106.29251700680271,0.07092198581560284
180.0,50.0,111.11111111111111,0.0947867298578199
170.0,43.75,90.07352941176471,0.08403361344537816
190.0,50.0,105.26315789473685,0.09248554913294797
149.0,43.875,103.35654362416106,0.0809688581314879
78.0,24.25,30.15705128205128,0.05
88.0,37.75,64.77556818181819,0.05510948905109489
75.0,24.25,31.363333333333333,0.04282560706401766
89.0,35.0,55.0561797752809,0.050816696914700546
63.0,24.5,38.11111111111111,0.04778156996587031
83.0,24.5,28.927710843373493,0.047228915662650604
67.0,24.25,35.10820895522388,0.048866498740554154
78.0,24.25,30.15705128205128,0.04429223744292238
97.0,24.333333333333332,36.6254295532646,0.05186500888099467
110.0,30.25,33.275,0.046538461538461535
110.0,26.666666666666668,19.393939393939394,0.029411764705882353
48.0,22.5,42.1875,0.04534005037783375
66.0,24.5,36.37878787878788,0.05444444444444444
52.0,19.5,29.25,0.03929471032745592
70.0,21.25,25.80357142857143,0.04106280193236715
60.0,22.75,34.50416666666667,0.050555555555555555
110.0,32.5,76.81818181818181,0.07726597325408618
140.0,39.75,90.28928571428571,0.08514056224899598
139.0,37.75,82.01798561151078,0.08459383753501401
105.0,38.5,84.7,0.06534653465346535
95.0,33.333333333333336,70.17543859649123,0.06339144215530904
85.0,33.333333333333336,78.43137254901961,0.06745362563237774
88.0,35.0,55.68181818181818,0.051470588235294115
100.0,37.5,84.375,0.06559766763848396
90.0,38.666666666666664,99.67407407407407,0.07227414330218068
105.0,38.5,84.7,0.0683431952662722
85.0,33.333333333333336,78.43137254901961,0.06514657980456026
110.0,37.5,76.70454545454545,0.062154696132596686
120.0,43.0,92.45,0.07565982404692081
145.0,38.125,80.19396551724138,0.08905109489051095
165.0,38.5,53.9,0.06705370101596517
139.0,37.75,82.01798561151078,0.09422776911076443
140.0,39.75,90.28928571428571,0.07794117647058824
68.0,24.5,35.30882352941177,0.045475638051044084
95.0,33.5,47.252631578947366,0.05234375
97.0,29.75,36.49742268041237,0.05173913043478261
75.0,26.25,36.75,0.04708520179372197
95.0,33.5,47.252631578947366,0.05328031809145129
105.0,39.0,57.942857142857136,0.05683060109289618
85.0,37.75,67.06176470588235,0.05288966725043783
97.0,29.75,36.49742268041237,0.04948024948024948
103.0,26.2,33.32233009708738,0.04628975265017668
125.0,27.166666666666668,35.425333333333334,0.05191082802547771
115.0,30.25,31.828260869565216,0.04329159212880143
133.0,27.166666666666668,33.29448621553885,0.04780058651026393
71.0,22.25,27.890845070422536,0.04472361809045226
68.0,24.5,35.30882352941177,0.04590163934426229
115.0,38.5,77.33478260869565,0.0711864406779661
85.0,33.333333333333336,78.43137254901961,0.06688963210702341
88.0,35.0,55.68181818181818,0.04844290657439446
90.0,38.666666666666664,99.67407407407407,0.07105666156202144
110.0,37.5,76.70454545454545,0.06696428571428571
130.0,38.125,89.44711538461539,0.07942708333333333
129.0,37.75,88.37596899224806,0.0810738255033557
138.0,43.875,111.59510869565217,0.08874841972187104
135.0,39.75,93.63333333333333,0.08302872062663186
155.0,43.75,98.79032258064517,0.08027522935779817
142.0,43.875,108.45158450704224,0.0865811544153922
125.0,33.375,71.289,0.07406380027739251
150.0,45.0,108.0,0.09137055837563451
71.0,22.25,27.890845070422536,0.04623376623376623
65.0,21.5,28.446153846153845,0.043544303797468355
80.0,24.5,30.0125,0.05117493472584857
80.0,30.25,45.753125,0.04531835205992509
77.0,36.6,86.98441558441559,0.05184135977337111
125.0,43.75,122.5,0.08974358974358974
71.0,35.25,70.00352112676057,0.044200626959247646
90.0,32.5,93.88888888888889,0.07602339181286549
70.0,26.25,39.375,0.04772727272727273
70.0,26.25,39.375,0.04883720930232558
65.0,21.25,27.78846153846154,0.04207920792079208
69.0,22.75,30.003623188405797,0.042723004694835684
90.0,37.75,63.33611111111111,0.05655430711610487
115.0,28.833333333333332,43.37536231884058,0.06666666666666667
115.0,28.833333333333332,43.37536231884058,0.06407407407407407
90.0,37.75,63.33611111111111,0.059076682316118935
76.0,24.5,31.592105263157897,0.0457089552238806
60.0,22.25,33.00416666666667,0.04522357723577236
70.0,24.5,34.3,0.04622641509433962
65.0,21.5,28.446153846153845,0.04259534422981674
90.0,37.75,63.33611111111111,0.05638536221060493
88.0,35.0,55.68181818181818,0.04878048780487805
90.0,37.75,63.33611111111111,0.05028305028305028
90.0,37.5,93.75,0.06654835847382432
78.0,24.25,30.15705128205128,0.0443327239488117
90.0,33.5,49.87777777777777,0.04942825525636296
75.0,30.0,48.0,0.04720692368214005
92.0,29.75,38.48097826086956,0.04889071487263763
75.0,27.0,38.88,0.04768211920529802
65.0,21.5,28.446153846153845,0.04075829383886256
105.0,39.0,57.942857142857136,0.055714285714285716
65.0,21.25,27.78846153846154,0.04028436018957346
48.0,22.5,42.1875,0.04316546762589928
48.0,22.5,42.1875,0.03854389721627409
67.0,24.2,43.70447761194029,0.04101694915254237
67.0,36.5,79.53731343283582,0.04492307692307692
67.0,22.75,30.899253731343283,0.049189189189189186
53.5,21.25,33.76168224299065,0.04632152588555858
67.0,24.25,35.10820895522388,0.04522144522144522
62.0,22.25,31.939516129032256,0.048238482384823846
132.0,28.0,35.63636363636364,0.0577319587628866
100.0,23.333333333333332,16.333333333333332,0.028925619834710745
88.0,30.5,42.28409090909091,0.0488
72.0,26.75,39.75347222222222,0.046724890829694325
84.0,33.75,54.24107142857143,0.05421686746987952
84.0,37.75,67.86011904761905,0.05730550284629981
92.0,39.0,66.13043478260869,0.059541984732824425
110.0,28.833333333333332,45.346969696969694,0.06348623853211009
84.0,33.75,54.24107142857143,0.05660377358490566
58.0,19.75,26.900862068965516,0.045014245014245016
64.0,21.5,28.890625,0.04586666666666667
60.0,20.25,27.337500000000002,0.04602272727272727
67.0,24.25,35.10820895522388,0.04697336561743341
65.0,21.25,27.78846153846154,0.043037974683544304
62.0,22.25,31.939516129032256,0.04341463414634146
68.0,22.75,30.44485294117647,0.04584382871536524
63.0,26.25,43.75,0.04740406320541761
65.0,24.5,36.93846153846154,0.04792176039119805
65.0,24.5,36.93846153846154,0.041176470588235294
74.0,26.25,37.24662162162162,0.04794520547945205
81.5,25.0,30.67484662576687,0.04310344827586207
75.0,26.75,38.163333333333334,0.04841628959276018
75.0,27.0,38.88,0.04595744680851064
100.0,29.75,35.402499999999996,0.04550669216061185
74.0,30.0,48.648648648648646,0.04554079696394687
80.0,35.25,62.128125,0.04365325077399381
76.0,24.166666666666668,46.10745614035088,0.04588607594936709
116.0,28.0,40.55172413793103,0.057931034482758624
120.0,24.333333333333332,29.605555555555554,0.049829351535836175
110.0,38.5,80.85000000000001,0.06764275256222547
105.0,43.75,145.83333333333334,0.09395973154362416
88.0,33.333333333333336,75.75757575757576,0.06535947712418301
85.0,37.5,99.26470588235294,0.06493506493506493
88.0,28.0,35.63636363636364,0.042994241842610366
88.0,28.0,35.63636363636364,0.04242424242424243
88.0,28.0,35.63636363636364,0.04676409185803758
85.0,28.0,36.89411764705883,0.04349514563106796
84.0,33.75,54.24107142857143,0.053465346534653464
90.0,37.75,63.33611111111111,0.05521023765996344
92.0,35.0,53.26086956521739,0.04886561954624782
90.0,37.75,63.33611111111111,0.04975288303130148
74.0,26.25,37.24662162162162,0.05303030303030303
68.0,22.75,30.44485294117647,0.044938271604938275
68.0,22.75,30.44485294117647,0.04619289340101523
63.0,26.25,43.75,0.04941176470588235
70.0,24.5,34.3,0.04611764705882353
88.0,30.0,40.909090909090914,0.05555555555555555
75.0,26.75,38.163333333333334,0.04852607709750567
70.0,27.0,41.65714285714286,0.048106904231625836
67.0,22.75,30.899253731343283,0.04631043256997455
67.0,22.75,30.899253731343283,0.04631043256997455
67.0,22.75,30.899253731343283,0.0456140350877193
110.0,30.166666666666668,49.63787878787879,0.061460101867572156
85.0,43.666666666666664,134.59607843137255,0.08689883913764511
92.0,39.0,66.13043478260869,0.06034816247582205
112.0,38.666666666666664,80.09523809523809,0.0818342151675485
96.0,36.0,54.0,0.05403377110694184
84.0,33.75,54.24107142857143,0.056962025316455694
90.0,37.75,63.33611111111111,0.0511864406779661
86.0,35.0,56.97674418604651,0.05017921146953405
52.0,24.25,45.23557692307693,0.045539906103286384
84.0,33.75,54.24107142857143,0.058823529411764705
79.0,30.0,45.56962025316456,0.045714285714285714
82.0,29.75,43.173780487804876,0.04375
1 horsepower bore_size grunt load
2 130.0 38.375 90.62403846153846 0.08761415525114155
3 165.0 43.75 92.80303030303031 0.09477389656106147
4 150.0 39.75 84.27 0.09254947613504075
5 150.0 38.0 77.01333333333334 0.08855228662976988
6 140.0 37.75 81.43214285714286 0.08756161206146709
7 198.0 53.625 116.1875 0.09882515549412578
8 220.0 56.75 117.11136363636363 0.10427193385392743
9 215.0 55.0 112.55813953488372 0.10204081632653061
10 225.0 56.875 115.01388888888889 0.10282485875706214
11 190.0 48.75 100.06578947368422 0.1012987012987013
12 170.0 47.875 107.85955882352941 0.10749368509682851
13 160.0 42.5 90.3125 0.0942089221390967
14 150.0 50.0 133.33333333333334 0.10635469290082425
15 225.0 56.875 115.01388888888889 0.091
16 95.0 28.25 33.60263157894737 0.047639123102866776
17 95.0 33.0 68.77894736842106 0.06989057536180728
18 97.0 33.166666666666664 68.04295532646047 0.07173756308579668
19 85.0 33.333333333333336 78.43137254901961 0.07730962504831851
20 88.0 24.25 26.730113636363637 0.045539906103286384
21 46.0 24.25 51.13586956521739 0.05286103542234333
22 87.0 27.5 34.770114942528735 0.04116766467065868
23 90.0 26.75 31.802777777777777 0.044032921810699586
24 95.0 26.0 28.46315789473684 0.043789473684210524
25 113.0 30.25 32.39159292035398 0.05416293643688451
26 90.0 33.166666666666664 73.33518518518518 0.07515105740181269
27 215.0 45.0 75.34883720930233 0.0780065005417118
28 200.0 38.375 58.905625 0.07015539305301645
29 210.0 39.75 60.19285714285714 0.07256960292104062
30 193.0 38.0 59.85492227979275 0.06424344885883347
31 88.0 24.25 26.730113636363637 0.045539906103286384
32 90.0 35.0 54.44444444444444 0.061837455830388695
33 95.0 28.25 33.60263157894737 0.050718132854578095
34 75.0 24.5 32.013333333333335 0.047898338220918865
35 100.0 38.666666666666664 89.70666666666666 0.08807896735003796
36 105.0 37.5 80.35714285714286 0.06542599592904914
37 100.0 41.666666666666664 104.16666666666666 0.07509762691498949
38 88.0 41.666666666666664 118.37121212121212 0.07571168988491823
39 100.0 38.666666666666664 89.70666666666666 0.0705596107055961
40 165.0 43.75 92.80303030303031 0.08315514373960561
41 175.0 50.0 114.28571428571429 0.08960573476702509
42 153.0 43.875 100.65441176470588 0.08449687048627828
43 150.0 39.75 84.27 0.07763671875
44 180.0 47.875 101.86736111111111 0.07729566094853683
45 170.0 50.0 117.64705882352942 0.08428150021070376
46 175.0 50.0 114.28571428571429 0.07782101167315175
47 110.0 43.0 100.85454545454546 0.08710330857528698
48 72.0 35.0 68.05555555555556 0.05813953488372093
49 100.0 41.666666666666664 104.16666666666666 0.07617306520414381
50 88.0 41.666666666666664 118.37121212121212 0.07964319847085059
51 86.0 30.5 43.26744186046512 0.054954954954954956
52 90.0 29.0 37.37777777777778 0.054639660857277436
53 70.0 19.75 22.289285714285715 0.038090646094503376
54 76.0 22.0 25.473684210526315 0.04261501210653753
55 65.0 17.75 19.388461538461538 0.04004512126339538
56 69.0 18.0 18.782608695652172 0.044637321760694355
57 60.0 24.25 39.204166666666666 0.05288985823336968
58 70.0 22.75 29.575 0.046547314578005115
59 95.0 28.25 33.60263157894737 0.04960491659350307
60 80.0 24.375 29.70703125 0.04586077140169332
61 54.0 24.25 43.56018518518518 0.04303460514640639
62 90.0 35.0 54.44444444444444 0.05813953488372093
63 86.0 30.5 43.26744186046512 0.05480682839173405
64 165.0 43.75 92.80303030303031 0.08189050070191858
65 175.0 50.0 114.28571428571429 0.09122006841505131
66 150.0 39.75 84.27 0.07690447400241839
67 153.0 43.875 100.65441176470588 0.08500847662872366
68 150.0 38.0 77.01333333333334 0.08278867102396514
69 208.0 53.625 110.6015625 0.09259658968271099
70 155.0 43.75 98.79032258064517 0.07774322523322967
71 160.0 43.75 95.703125 0.07854578096947935
72 190.0 50.0 105.26315789473685 0.09045680687471733
73 97.0 23.333333333333332 16.83848797250859 0.030042918454935622
74 150.0 38.0 77.01333333333334 0.07810894141829394
75 130.0 38.375 90.62403846153846 0.0749145924841386
76 140.0 37.75 81.43214285714286 0.0703306939916162
77 150.0 39.75 84.27 0.07799852832965416
78 112.0 30.25 32.68080357142857 0.04125468803273099
79 76.0 30.25 48.161184210526315 0.04818797291915571
80 87.0 30.0 41.37931034482759 0.04028197381671702
81 69.0 24.0 33.391304347826086 0.0438556418455916
82 86.0 30.5 43.26744186046512 0.05093945720250522
83 92.0 24.25 25.567934782608695 0.042395104895104896
84 97.0 30.0 37.113402061855666 0.047885075818036714
85 80.0 24.5 30.0125 0.04528650646950092
86 88.0 24.25 26.730113636363637 0.04619047619047619
87 175.0 43.75 87.5 0.08536585365853659
88 150.0 38.0 77.01333333333334 0.08278867102396514
89 145.0 43.75 105.60344827586206 0.08776328986960882
90 137.0 37.75 83.21532846715328 0.07471548738248392
91 150.0 39.75 84.27 0.08419380460683082
92 198.0 53.625 116.1875 0.08663166397415185
93 150.0 50.0 133.33333333333334 0.08960573476702509
94 158.0 43.875 97.46914556962025 0.08044923217969287
95 150.0 39.75 84.27 0.07505310361104556
96 215.0 55.0 112.55813953488372 0.09292502639915523
97 225.0 56.875 115.01388888888889 0.09190062613613412
98 175.0 45.0 92.57142857142857 0.0942161737764983
99 105.0 37.5 80.35714285714286 0.07209227811598846
100 100.0 41.666666666666664 104.16666666666666 0.0762660158633313
101 100.0 38.666666666666664 89.70666666666666 0.07877758913412564
102 88.0 41.666666666666664 118.37121212121212 0.08275405494869248
103 95.0 33.0 68.77894736842106 0.06818181818181818
104 46.0 24.25 51.13586956521739 0.04974358974358974
105 150.0 50.0 133.33333333333334 0.08004802881729037
106 167.0 50.0 119.76047904191617 0.08153281695882593
107 170.0 45.0 95.29411764705883 0.07735281478298238
108 180.0 43.75 85.06944444444446 0.07779506557012669
109 100.0 38.666666666666664 89.70666666666666 0.08318393689494442
110 88.0 24.25 26.730113636363637 0.04256252742430891
111 72.0 35.0 68.05555555555556 0.05830903790087463
112 94.0 27.0 31.02127659574468 0.04539722572509458
113 90.0 23.333333333333332 18.148148148148145 0.03295668549905838
114 85.0 30.5 43.77647058823529 0.05281385281385281
115 107.0 25.833333333333332 37.4221183800623 0.06270226537216829
116 90.0 24.5 26.677777777777777 0.04326710816777042
117 145.0 43.75 105.60344827586206 0.08574228319451249
118 230.0 50.0 86.95652173913044 0.09350163627863488
119 49.0 17.0 23.591836734693878 0.03642206748794858
120 75.0 29.0 44.85333333333333 0.05375347544022243
121 91.0 28.5 35.7032967032967 0.044151820294345466
122 112.0 30.25 32.68080357142857 0.04218967921896792
123 150.0 39.75 84.27 0.09355692850838482
124 110.0 30.25 33.275 0.04548872180451128
125 122.0 26.0 33.24590163934426 0.055575347345920914
126 180.0 43.75 85.06944444444446 0.09552401746724891
127 95.0 33.0 68.77894736842106 0.06382978723404255
128 85.0 33.333333333333336 78.43137254901961 0.06956521739130435
129 100.0 38.666666666666664 89.70666666666666 0.07997242330230955
130 100.0 41.666666666666664 104.16666666666666 0.0749400479616307
131 67.0 19.75 23.287313432835823 0.04051282051282051
132 80.0 30.5 46.5125 0.049775601795185635
133 65.0 17.75 19.388461538461538 0.03867102396514161
134 75.0 35.0 65.33333333333333 0.05507474429583006
135 100.0 41.666666666666664 104.16666666666666 0.06612007405448295
136 110.0 43.0 100.85454545454546 0.0710352422907489
137 105.0 37.5 80.35714285714286 0.06227511763077775
138 140.0 37.75 81.43214285714286 0.07292924414392658
139 150.0 43.75 102.08333333333334 0.07448393275164929
140 150.0 39.75 84.27 0.0713484406551492
141 140.0 37.75 81.43214285714286 0.06511427339370418
142 150.0 38.0 77.01333333333334 0.0714117923420249
143 83.0 24.5 28.927710843373493 0.04416403785488959
144 67.0 19.75 23.287313432835823 0.040244523688232295
145 78.0 24.25 30.15705128205128 0.04217391304347826
146 52.0 19.0 27.76923076923077 0.04608853850818678
147 61.0 20.75 28.233606557377048 0.04143784323514728
148 75.0 22.5 27.0 0.042352941176470586
149 75.0 22.5 27.0 0.04269449715370019
150 75.0 29.0 44.85333333333333 0.051647373107747106
151 97.0 30.0 37.113402061855666 0.04821213338690237
152 93.0 27.0 31.354838709677416 0.0451693851944793
153 67.0 19.75 23.287313432835823 0.0395
154 95.0 37.5 88.8157894736842 0.06893382352941177
155 105.0 41.666666666666664 99.2063492063492 0.07227522405319456
156 72.0 41.666666666666664 144.67592592592592 0.07284382284382285
157 72.0 41.666666666666664 144.67592592592592 0.07916402786573781
158 170.0 50.0 117.64705882352942 0.0856898029134533
159 145.0 43.75 105.60344827586206 0.07882882882882883
160 150.0 39.75 84.27 0.0706980880391285
161 148.0 43.875 104.05489864864865 0.07537041013528023
162 110.0 38.5 80.85000000000001 0.05912464806757103
163 105.0 41.666666666666664 99.2063492063492 0.06415191172696946
164 110.0 43.0 100.85454545454546 0.06916890080428954
165 95.0 37.5 88.8157894736842 0.059445178335535004
166 110.0 38.5 80.85000000000001 0.07601184600197433
167 110.0 32.75 78.00454545454546 0.08134119838559453
168 129.0 37.75 88.37596899224806 0.09529820132533923
169 75.0 24.25 31.363333333333333 0.04467987102717642
170 83.0 35.0 59.036144578313255 0.05305039787798409
171 100.0 38.666666666666664 89.70666666666666 0.07961564859299931
172 78.0 35.0 62.82051282051282 0.05401234567901234
173 96.0 33.5 46.76041666666667 0.049592894152479645
174 71.0 22.5 28.52112676056338 0.04048582995951417
175 97.0 29.75 36.49742268041237 0.04675834970530452
176 97.0 28.5 50.24226804123711 0.05730563002680965
177 70.0 22.5 28.928571428571427 0.04646360351058337
178 90.0 38.666666666666664 99.67407407407407 0.07225163500467144
179 95.0 28.75 34.80263157894737 0.042687453600593915
180 88.0 30.0 40.909090909090914 0.040581670612106865
181 98.0 30.25 37.349489795918366 0.04108658743633277
182 115.0 30.25 31.828260869565216 0.04530138524897042
183 53.0 22.75 39.06132075471698 0.050696378830083565
184 86.0 26.75 33.281976744186046 0.04342532467532467
185 81.0 29.0 41.53086419753086 0.05225225225225225
186 92.0 35.0 53.26086956521739 0.05443234836702955
187 79.0 24.5 30.39240506329114 0.043458980044345896
188 83.0 25.25 30.725903614457835 0.04586739327883742
189 140.0 38.125 83.05803571428571 0.07236061684460261
190 150.0 39.75 84.27 0.07589498806682578
191 120.0 38.0 96.26666666666667 0.0767289247854619
192 152.0 43.875 101.31661184210526 0.08327402135231317
193 100.0 37.5 84.375 0.06959480358799876
194 105.0 41.666666666666664 99.2063492063492 0.07456009543692216
195 81.0 33.333333333333336 82.3045267489712 0.06640106241699867
196 90.0 38.666666666666664 99.67407407407407 0.07520259319286872
197 52.0 21.25 34.73557692307692 0.04176904176904177
198 60.0 24.5 40.016666666666666 0.04528650646950092
199 70.0 22.5 28.928571428571427 0.04646360351058337
200 53.0 22.75 39.06132075471698 0.050696378830083565
201 100.0 37.5 84.375 0.06162695152013147
202 78.0 41.666666666666664 133.54700854700855 0.06994963626189143
203 110.0 41.666666666666664 94.69696969696969 0.06858710562414266
204 95.0 43.0 116.77894736842106 0.08080175383651739
205 71.0 24.25 33.13028169014085 0.05315068493150685
206 70.0 21.25 25.80357142857143 0.04271356783919598
207 75.0 24.25 31.363333333333333 0.04501160092807425
208 72.0 35.0 68.05555555555556 0.05458089668615984
209 102.0 32.5 41.42156862745098 0.04126984126984127
210 150.0 39.75 84.27 0.08071065989847716
211 88.0 30.0 40.909090909090914 0.03669724770642202
212 108.0 26.0 37.55555555555556 0.05324232081911263
213 120.0 28.0 39.199999999999996 0.04397905759162304
214 180.0 43.75 85.06944444444446 0.07990867579908675
215 145.0 43.75 105.60344827586206 0.08631319358816276
216 130.0 37.75 87.69615384615385 0.07803617571059432
217 150.0 39.75 84.27 0.08468708388814913
218 68.0 24.5 35.30882352941177 0.04792176039119805
219 80.0 27.75 38.503125000000004 0.051508120649651976
220 58.0 19.75 26.900862068965516 0.04328767123287671
221 96.0 30.5 38.760416666666664 0.05304347826086957
222 70.0 21.25 25.80357142857143 0.043701799485861184
223 145.0 38.125 80.19396551724138 0.07860824742268041
224 110.0 32.5 76.81818181818181 0.06403940886699508
225 145.0 39.75 87.17586206896551 0.07681159420289856
226 130.0 37.75 87.69615384615385 0.07031431897555297
227 110.0 41.666666666666664 94.69696969696969 0.07102272727272728
228 105.0 38.5 84.7 0.06744525547445256
229 100.0 37.5 84.375 0.06198347107438017
230 98.0 41.666666666666664 106.29251700680271 0.07092198581560284
231 180.0 50.0 111.11111111111111 0.0947867298578199
232 170.0 43.75 90.07352941176471 0.08403361344537816
233 190.0 50.0 105.26315789473685 0.09248554913294797
234 149.0 43.875 103.35654362416106 0.0809688581314879
235 78.0 24.25 30.15705128205128 0.05
236 88.0 37.75 64.77556818181819 0.05510948905109489
237 75.0 24.25 31.363333333333333 0.04282560706401766
238 89.0 35.0 55.0561797752809 0.050816696914700546
239 63.0 24.5 38.11111111111111 0.04778156996587031
240 83.0 24.5 28.927710843373493 0.047228915662650604
241 67.0 24.25 35.10820895522388 0.048866498740554154
242 78.0 24.25 30.15705128205128 0.04429223744292238
243 97.0 24.333333333333332 36.6254295532646 0.05186500888099467
244 110.0 30.25 33.275 0.046538461538461535
245 110.0 26.666666666666668 19.393939393939394 0.029411764705882353
246 48.0 22.5 42.1875 0.04534005037783375
247 66.0 24.5 36.37878787878788 0.05444444444444444
248 52.0 19.5 29.25 0.03929471032745592
249 70.0 21.25 25.80357142857143 0.04106280193236715
250 60.0 22.75 34.50416666666667 0.050555555555555555
251 110.0 32.5 76.81818181818181 0.07726597325408618
252 140.0 39.75 90.28928571428571 0.08514056224899598
253 139.0 37.75 82.01798561151078 0.08459383753501401
254 105.0 38.5 84.7 0.06534653465346535
255 95.0 33.333333333333336 70.17543859649123 0.06339144215530904
256 85.0 33.333333333333336 78.43137254901961 0.06745362563237774
257 88.0 35.0 55.68181818181818 0.051470588235294115
258 100.0 37.5 84.375 0.06559766763848396
259 90.0 38.666666666666664 99.67407407407407 0.07227414330218068
260 105.0 38.5 84.7 0.0683431952662722
261 85.0 33.333333333333336 78.43137254901961 0.06514657980456026
262 110.0 37.5 76.70454545454545 0.062154696132596686
263 120.0 43.0 92.45 0.07565982404692081
264 145.0 38.125 80.19396551724138 0.08905109489051095
265 165.0 38.5 53.9 0.06705370101596517
266 139.0 37.75 82.01798561151078 0.09422776911076443
267 140.0 39.75 90.28928571428571 0.07794117647058824
268 68.0 24.5 35.30882352941177 0.045475638051044084
269 95.0 33.5 47.252631578947366 0.05234375
270 97.0 29.75 36.49742268041237 0.05173913043478261
271 75.0 26.25 36.75 0.04708520179372197
272 95.0 33.5 47.252631578947366 0.05328031809145129
273 105.0 39.0 57.942857142857136 0.05683060109289618
274 85.0 37.75 67.06176470588235 0.05288966725043783
275 97.0 29.75 36.49742268041237 0.04948024948024948
276 103.0 26.2 33.32233009708738 0.04628975265017668
277 125.0 27.166666666666668 35.425333333333334 0.05191082802547771
278 115.0 30.25 31.828260869565216 0.04329159212880143
279 133.0 27.166666666666668 33.29448621553885 0.04780058651026393
280 71.0 22.25 27.890845070422536 0.04472361809045226
281 68.0 24.5 35.30882352941177 0.04590163934426229
282 115.0 38.5 77.33478260869565 0.0711864406779661
283 85.0 33.333333333333336 78.43137254901961 0.06688963210702341
284 88.0 35.0 55.68181818181818 0.04844290657439446
285 90.0 38.666666666666664 99.67407407407407 0.07105666156202144
286 110.0 37.5 76.70454545454545 0.06696428571428571
287 130.0 38.125 89.44711538461539 0.07942708333333333
288 129.0 37.75 88.37596899224806 0.0810738255033557
289 138.0 43.875 111.59510869565217 0.08874841972187104
290 135.0 39.75 93.63333333333333 0.08302872062663186
291 155.0 43.75 98.79032258064517 0.08027522935779817
292 142.0 43.875 108.45158450704224 0.0865811544153922
293 125.0 33.375 71.289 0.07406380027739251
294 150.0 45.0 108.0 0.09137055837563451
295 71.0 22.25 27.890845070422536 0.04623376623376623
296 65.0 21.5 28.446153846153845 0.043544303797468355
297 80.0 24.5 30.0125 0.05117493472584857
298 80.0 30.25 45.753125 0.04531835205992509
299 77.0 36.6 86.98441558441559 0.05184135977337111
300 125.0 43.75 122.5 0.08974358974358974
301 71.0 35.25 70.00352112676057 0.044200626959247646
302 90.0 32.5 93.88888888888889 0.07602339181286549
303 70.0 26.25 39.375 0.04772727272727273
304 70.0 26.25 39.375 0.04883720930232558
305 65.0 21.25 27.78846153846154 0.04207920792079208
306 69.0 22.75 30.003623188405797 0.042723004694835684
307 90.0 37.75 63.33611111111111 0.05655430711610487
308 115.0 28.833333333333332 43.37536231884058 0.06666666666666667
309 115.0 28.833333333333332 43.37536231884058 0.06407407407407407
310 90.0 37.75 63.33611111111111 0.059076682316118935
311 76.0 24.5 31.592105263157897 0.0457089552238806
312 60.0 22.25 33.00416666666667 0.04522357723577236
313 70.0 24.5 34.3 0.04622641509433962
314 65.0 21.5 28.446153846153845 0.04259534422981674
315 90.0 37.75 63.33611111111111 0.05638536221060493
316 88.0 35.0 55.68181818181818 0.04878048780487805
317 90.0 37.75 63.33611111111111 0.05028305028305028
318 90.0 37.5 93.75 0.06654835847382432
319 78.0 24.25 30.15705128205128 0.0443327239488117
320 90.0 33.5 49.87777777777777 0.04942825525636296
321 75.0 30.0 48.0 0.04720692368214005
322 92.0 29.75 38.48097826086956 0.04889071487263763
323 75.0 27.0 38.88 0.04768211920529802
324 65.0 21.5 28.446153846153845 0.04075829383886256
325 105.0 39.0 57.942857142857136 0.055714285714285716
326 65.0 21.25 27.78846153846154 0.04028436018957346
327 48.0 22.5 42.1875 0.04316546762589928
328 48.0 22.5 42.1875 0.03854389721627409
329 67.0 24.2 43.70447761194029 0.04101694915254237
330 67.0 36.5 79.53731343283582 0.04492307692307692
331 67.0 22.75 30.899253731343283 0.049189189189189186
332 53.5 21.25 33.76168224299065 0.04632152588555858
333 67.0 24.25 35.10820895522388 0.04522144522144522
334 62.0 22.25 31.939516129032256 0.048238482384823846
335 132.0 28.0 35.63636363636364 0.0577319587628866
336 100.0 23.333333333333332 16.333333333333332 0.028925619834710745
337 88.0 30.5 42.28409090909091 0.0488
338 72.0 26.75 39.75347222222222 0.046724890829694325
339 84.0 33.75 54.24107142857143 0.05421686746987952
340 84.0 37.75 67.86011904761905 0.05730550284629981
341 92.0 39.0 66.13043478260869 0.059541984732824425
342 110.0 28.833333333333332 45.346969696969694 0.06348623853211009
343 84.0 33.75 54.24107142857143 0.05660377358490566
344 58.0 19.75 26.900862068965516 0.045014245014245016
345 64.0 21.5 28.890625 0.04586666666666667
346 60.0 20.25 27.337500000000002 0.04602272727272727
347 67.0 24.25 35.10820895522388 0.04697336561743341
348 65.0 21.25 27.78846153846154 0.043037974683544304
349 62.0 22.25 31.939516129032256 0.04341463414634146
350 68.0 22.75 30.44485294117647 0.04584382871536524
351 63.0 26.25 43.75 0.04740406320541761
352 65.0 24.5 36.93846153846154 0.04792176039119805
353 65.0 24.5 36.93846153846154 0.041176470588235294
354 74.0 26.25 37.24662162162162 0.04794520547945205
355 81.5 25.0 30.67484662576687 0.04310344827586207
356 75.0 26.75 38.163333333333334 0.04841628959276018
357 75.0 27.0 38.88 0.04595744680851064
358 100.0 29.75 35.402499999999996 0.04550669216061185
359 74.0 30.0 48.648648648648646 0.04554079696394687
360 80.0 35.25 62.128125 0.04365325077399381
361 76.0 24.166666666666668 46.10745614035088 0.04588607594936709
362 116.0 28.0 40.55172413793103 0.057931034482758624
363 120.0 24.333333333333332 29.605555555555554 0.049829351535836175
364 110.0 38.5 80.85000000000001 0.06764275256222547
365 105.0 43.75 145.83333333333334 0.09395973154362416
366 88.0 33.333333333333336 75.75757575757576 0.06535947712418301
367 85.0 37.5 99.26470588235294 0.06493506493506493
368 88.0 28.0 35.63636363636364 0.042994241842610366
369 88.0 28.0 35.63636363636364 0.04242424242424243
370 88.0 28.0 35.63636363636364 0.04676409185803758
371 85.0 28.0 36.89411764705883 0.04349514563106796
372 84.0 33.75 54.24107142857143 0.053465346534653464
373 90.0 37.75 63.33611111111111 0.05521023765996344
374 92.0 35.0 53.26086956521739 0.04886561954624782
375 90.0 37.75 63.33611111111111 0.04975288303130148
376 74.0 26.25 37.24662162162162 0.05303030303030303
377 68.0 22.75 30.44485294117647 0.044938271604938275
378 68.0 22.75 30.44485294117647 0.04619289340101523
379 63.0 26.25 43.75 0.04941176470588235
380 70.0 24.5 34.3 0.04611764705882353
381 88.0 30.0 40.909090909090914 0.05555555555555555
382 75.0 26.75 38.163333333333334 0.04852607709750567
383 70.0 27.0 41.65714285714286 0.048106904231625836
384 67.0 22.75 30.899253731343283 0.04631043256997455
385 67.0 22.75 30.899253731343283 0.04631043256997455
386 67.0 22.75 30.899253731343283 0.0456140350877193
387 110.0 30.166666666666668 49.63787878787879 0.061460101867572156
388 85.0 43.666666666666664 134.59607843137255 0.08689883913764511
389 92.0 39.0 66.13043478260869 0.06034816247582205
390 112.0 38.666666666666664 80.09523809523809 0.0818342151675485
391 96.0 36.0 54.0 0.05403377110694184
392 84.0 33.75 54.24107142857143 0.056962025316455694
393 90.0 37.75 63.33611111111111 0.0511864406779661
394 86.0 35.0 56.97674418604651 0.05017921146953405
395 52.0 24.25 45.23557692307693 0.045539906103286384
396 84.0 33.75 54.24107142857143 0.058823529411764705
397 79.0 30.0 45.56962025316456 0.045714285714285714
398 82.0 29.75 43.173780487804876 0.04375

398
data/auto-mpg.data Normal file
View file

@ -0,0 +1,398 @@
18.0 8 307.0 130.0 3504. 12.0 70 1 "chevrolet chevelle malibu"
15.0 8 350.0 165.0 3693. 11.5 70 1 "buick skylark 320"
18.0 8 318.0 150.0 3436. 11.0 70 1 "plymouth satellite"
16.0 8 304.0 150.0 3433. 12.0 70 1 "amc rebel sst"
17.0 8 302.0 140.0 3449. 10.5 70 1 "ford torino"
15.0 8 429.0 198.0 4341. 10.0 70 1 "ford galaxie 500"
14.0 8 454.0 220.0 4354. 9.0 70 1 "chevrolet impala"
14.0 8 440.0 215.0 4312. 8.5 70 1 "plymouth fury iii"
14.0 8 455.0 225.0 4425. 10.0 70 1 "pontiac catalina"
15.0 8 390.0 190.0 3850. 8.5 70 1 "amc ambassador dpl"
15.0 8 383.0 170.0 3563. 10.0 70 1 "dodge challenger se"
14.0 8 340.0 160.0 3609. 8.0 70 1 "plymouth 'cuda 340"
15.0 8 400.0 150.0 3761. 9.5 70 1 "chevrolet monte carlo"
14.0 8 455.0 225.0 3086. 10.0 70 1 "buick estate wagon (sw)"
24.0 4 113.0 95.00 2372. 15.0 70 3 "toyota corona mark ii"
22.0 6 198.0 95.00 2833. 15.5 70 1 "plymouth duster"
18.0 6 199.0 97.00 2774. 15.5 70 1 "amc hornet"
21.0 6 200.0 85.00 2587. 16.0 70 1 "ford maverick"
27.0 4 97.00 88.00 2130. 14.5 70 3 "datsun pl510"
26.0 4 97.00 46.00 1835. 20.5 70 2 "volkswagen 1131 deluxe sedan"
25.0 4 110.0 87.00 2672. 17.5 70 2 "peugeot 504"
24.0 4 107.0 90.00 2430. 14.5 70 2 "audi 100 ls"
25.0 4 104.0 95.00 2375. 17.5 70 2 "saab 99e"
26.0 4 121.0 113.0 2234. 12.5 70 2 "bmw 2002"
21.0 6 199.0 90.00 2648. 15.0 70 1 "amc gremlin"
10.0 8 360.0 215.0 4615. 14.0 70 1 "ford f250"
10.0 8 307.0 200.0 4376. 15.0 70 1 "chevy c20"
11.0 8 318.0 210.0 4382. 13.5 70 1 "dodge d200"
9.0 8 304.0 193.0 4732. 18.5 70 1 "hi 1200d"
27.0 4 97.00 88.00 2130. 14.5 71 3 "datsun pl510"
28.0 4 140.0 90.00 2264. 15.5 71 1 "chevrolet vega 2300"
25.0 4 113.0 95.00 2228. 14.0 71 3 "toyota corona"
25.0 4 98.00 ? 2046. 19.0 71 1 "ford pinto"
19.0 6 232.0 100.0 2634. 13.0 71 1 "amc gremlin"
16.0 6 225.0 105.0 3439. 15.5 71 1 "plymouth satellite custom"
17.0 6 250.0 100.0 3329. 15.5 71 1 "chevrolet chevelle malibu"
19.0 6 250.0 88.00 3302. 15.5 71 1 "ford torino 500"
18.0 6 232.0 100.0 3288. 15.5 71 1 "amc matador"
14.0 8 350.0 165.0 4209. 12.0 71 1 "chevrolet impala"
14.0 8 400.0 175.0 4464. 11.5 71 1 "pontiac catalina brougham"
14.0 8 351.0 153.0 4154. 13.5 71 1 "ford galaxie 500"
14.0 8 318.0 150.0 4096. 13.0 71 1 "plymouth fury iii"
12.0 8 383.0 180.0 4955. 11.5 71 1 "dodge monaco (sw)"
13.0 8 400.0 170.0 4746. 12.0 71 1 "ford country squire (sw)"
13.0 8 400.0 175.0 5140. 12.0 71 1 "pontiac safari (sw)"
18.0 6 258.0 110.0 2962. 13.5 71 1 "amc hornet sportabout (sw)"
22.0 4 140.0 72.00 2408. 19.0 71 1 "chevrolet vega (sw)"
19.0 6 250.0 100.0 3282. 15.0 71 1 "pontiac firebird"
18.0 6 250.0 88.00 3139. 14.5 71 1 "ford mustang"
23.0 4 122.0 86.00 2220. 14.0 71 1 "mercury capri 2000"
28.0 4 116.0 90.00 2123. 14.0 71 2 "opel 1900"
30.0 4 79.00 70.00 2074. 19.5 71 2 "peugeot 304"
30.0 4 88.00 76.00 2065. 14.5 71 2 "fiat 124b"
31.0 4 71.00 65.00 1773. 19.0 71 3 "toyota corolla 1200"
35.0 4 72.00 69.00 1613. 18.0 71 3 "datsun 1200"
27.0 4 97.00 60.00 1834. 19.0 71 2 "volkswagen model 111"
26.0 4 91.00 70.00 1955. 20.5 71 1 "plymouth cricket"
24.0 4 113.0 95.00 2278. 15.5 72 3 "toyota corona hardtop"
25.0 4 97.50 80.00 2126. 17.0 72 1 "dodge colt hardtop"
23.0 4 97.00 54.00 2254. 23.5 72 2 "volkswagen type 3"
20.0 4 140.0 90.00 2408. 19.5 72 1 "chevrolet vega"
21.0 4 122.0 86.00 2226. 16.5 72 1 "ford pinto runabout"
13.0 8 350.0 165.0 4274. 12.0 72 1 "chevrolet impala"
14.0 8 400.0 175.0 4385. 12.0 72 1 "pontiac catalina"
15.0 8 318.0 150.0 4135. 13.5 72 1 "plymouth fury iii"
14.0 8 351.0 153.0 4129. 13.0 72 1 "ford galaxie 500"
17.0 8 304.0 150.0 3672. 11.5 72 1 "amc ambassador sst"
11.0 8 429.0 208.0 4633. 11.0 72 1 "mercury marquis"
13.0 8 350.0 155.0 4502. 13.5 72 1 "buick lesabre custom"
12.0 8 350.0 160.0 4456. 13.5 72 1 "oldsmobile delta 88 royale"
13.0 8 400.0 190.0 4422. 12.5 72 1 "chrysler newport royal"
19.0 3 70.00 97.00 2330. 13.5 72 3 "mazda rx2 coupe"
15.0 8 304.0 150.0 3892. 12.5 72 1 "amc matador (sw)"
13.0 8 307.0 130.0 4098. 14.0 72 1 "chevrolet chevelle concours (sw)"
13.0 8 302.0 140.0 4294. 16.0 72 1 "ford gran torino (sw)"
14.0 8 318.0 150.0 4077. 14.0 72 1 "plymouth satellite custom (sw)"
18.0 4 121.0 112.0 2933. 14.5 72 2 "volvo 145e (sw)"
22.0 4 121.0 76.00 2511. 18.0 72 2 "volkswagen 411 (sw)"
21.0 4 120.0 87.00 2979. 19.5 72 2 "peugeot 504 (sw)"
26.0 4 96.00 69.00 2189. 18.0 72 2 "renault 12 (sw)"
22.0 4 122.0 86.00 2395. 16.0 72 1 "ford pinto (sw)"
28.0 4 97.00 92.00 2288. 17.0 72 3 "datsun 510 (sw)"
23.0 4 120.0 97.00 2506. 14.5 72 3 "toyouta corona mark ii (sw)"
28.0 4 98.00 80.00 2164. 15.0 72 1 "dodge colt (sw)"
27.0 4 97.00 88.00 2100. 16.5 72 3 "toyota corolla 1600 (sw)"
13.0 8 350.0 175.0 4100. 13.0 73 1 "buick century 350"
14.0 8 304.0 150.0 3672. 11.5 73 1 "amc matador"
13.0 8 350.0 145.0 3988. 13.0 73 1 "chevrolet malibu"
14.0 8 302.0 137.0 4042. 14.5 73 1 "ford gran torino"
15.0 8 318.0 150.0 3777. 12.5 73 1 "dodge coronet custom"
12.0 8 429.0 198.0 4952. 11.5 73 1 "mercury marquis brougham"
13.0 8 400.0 150.0 4464. 12.0 73 1 "chevrolet caprice classic"
13.0 8 351.0 158.0 4363. 13.0 73 1 "ford ltd"
14.0 8 318.0 150.0 4237. 14.5 73 1 "plymouth fury gran sedan"
13.0 8 440.0 215.0 4735. 11.0 73 1 "chrysler new yorker brougham"
12.0 8 455.0 225.0 4951. 11.0 73 1 "buick electra 225 custom"
13.0 8 360.0 175.0 3821. 11.0 73 1 "amc ambassador brougham"
18.0 6 225.0 105.0 3121. 16.5 73 1 "plymouth valiant"
16.0 6 250.0 100.0 3278. 18.0 73 1 "chevrolet nova custom"
18.0 6 232.0 100.0 2945. 16.0 73 1 "amc hornet"
18.0 6 250.0 88.00 3021. 16.5 73 1 "ford maverick"
23.0 6 198.0 95.00 2904. 16.0 73 1 "plymouth duster"
26.0 4 97.00 46.00 1950. 21.0 73 2 "volkswagen super beetle"
11.0 8 400.0 150.0 4997. 14.0 73 1 "chevrolet impala"
12.0 8 400.0 167.0 4906. 12.5 73 1 "ford country"
13.0 8 360.0 170.0 4654. 13.0 73 1 "plymouth custom suburb"
12.0 8 350.0 180.0 4499. 12.5 73 1 "oldsmobile vista cruiser"
18.0 6 232.0 100.0 2789. 15.0 73 1 "amc gremlin"
20.0 4 97.00 88.00 2279. 19.0 73 3 "toyota carina"
21.0 4 140.0 72.00 2401. 19.5 73 1 "chevrolet vega"
22.0 4 108.0 94.00 2379. 16.5 73 3 "datsun 610"
18.0 3 70.00 90.00 2124. 13.5 73 3 "maxda rx3"
19.0 4 122.0 85.00 2310. 18.5 73 1 "ford pinto"
21.0 6 155.0 107.0 2472. 14.0 73 1 "mercury capri v6"
26.0 4 98.00 90.00 2265. 15.5 73 2 "fiat 124 sport coupe"
15.0 8 350.0 145.0 4082. 13.0 73 1 "chevrolet monte carlo s"
16.0 8 400.0 230.0 4278. 9.50 73 1 "pontiac grand prix"
29.0 4 68.00 49.00 1867. 19.5 73 2 "fiat 128"
24.0 4 116.0 75.00 2158. 15.5 73 2 "opel manta"
20.0 4 114.0 91.00 2582. 14.0 73 2 "audi 100ls"
19.0 4 121.0 112.0 2868. 15.5 73 2 "volvo 144ea"
15.0 8 318.0 150.0 3399. 11.0 73 1 "dodge dart custom"
24.0 4 121.0 110.0 2660. 14.0 73 2 "saab 99le"
20.0 6 156.0 122.0 2807. 13.5 73 3 "toyota mark ii"
11.0 8 350.0 180.0 3664. 11.0 73 1 "oldsmobile omega"
20.0 6 198.0 95.00 3102. 16.5 74 1 "plymouth duster"
21.0 6 200.0 ? 2875. 17.0 74 1 "ford maverick"
19.0 6 232.0 100.0 2901. 16.0 74 1 "amc hornet"
15.0 6 250.0 100.0 3336. 17.0 74 1 "chevrolet nova"
31.0 4 79.00 67.00 1950. 19.0 74 3 "datsun b210"
26.0 4 122.0 80.00 2451. 16.5 74 1 "ford pinto"
32.0 4 71.00 65.00 1836. 21.0 74 3 "toyota corolla 1200"
25.0 4 140.0 75.00 2542. 17.0 74 1 "chevrolet vega"
16.0 6 250.0 100.0 3781. 17.0 74 1 "chevrolet chevelle malibu classic"
16.0 6 258.0 110.0 3632. 18.0 74 1 "amc matador"
18.0 6 225.0 105.0 3613. 16.5 74 1 "plymouth satellite sebring"
16.0 8 302.0 140.0 4141. 14.0 74 1 "ford gran torino"
13.0 8 350.0 150.0 4699. 14.5 74 1 "buick century luxus (sw)"
14.0 8 318.0 150.0 4457. 13.5 74 1 "dodge coronet custom (sw)"
14.0 8 302.0 140.0 4638. 16.0 74 1 "ford gran torino (sw)"
14.0 8 304.0 150.0 4257. 15.5 74 1 "amc matador (sw)"
29.0 4 98.00 83.00 2219. 16.5 74 2 "audi fox"
26.0 4 79.00 67.00 1963. 15.5 74 2 "volkswagen dasher"
26.0 4 97.00 78.00 2300. 14.5 74 2 "opel manta"
31.0 4 76.00 52.00 1649. 16.5 74 3 "toyota corona"
32.0 4 83.00 61.00 2003. 19.0 74 3 "datsun 710"
28.0 4 90.00 75.00 2125. 14.5 74 1 "dodge colt"
24.0 4 90.00 75.00 2108. 15.5 74 2 "fiat 128"
26.0 4 116.0 75.00 2246. 14.0 74 2 "fiat 124 tc"
24.0 4 120.0 97.00 2489. 15.0 74 3 "honda civic"
26.0 4 108.0 93.00 2391. 15.5 74 3 "subaru"
31.0 4 79.00 67.00 2000. 16.0 74 2 "fiat x1.9"
19.0 6 225.0 95.00 3264. 16.0 75 1 "plymouth valiant custom"
18.0 6 250.0 105.0 3459. 16.0 75 1 "chevrolet nova"
15.0 6 250.0 72.00 3432. 21.0 75 1 "mercury monarch"
15.0 6 250.0 72.00 3158. 19.5 75 1 "ford maverick"
16.0 8 400.0 170.0 4668. 11.5 75 1 "pontiac catalina"
15.0 8 350.0 145.0 4440. 14.0 75 1 "chevrolet bel air"
16.0 8 318.0 150.0 4498. 14.5 75 1 "plymouth grand fury"
14.0 8 351.0 148.0 4657. 13.5 75 1 "ford ltd"
17.0 6 231.0 110.0 3907. 21.0 75 1 "buick century"
16.0 6 250.0 105.0 3897. 18.5 75 1 "chevroelt chevelle malibu"
15.0 6 258.0 110.0 3730. 19.0 75 1 "amc matador"
18.0 6 225.0 95.00 3785. 19.0 75 1 "plymouth fury"
21.0 6 231.0 110.0 3039. 15.0 75 1 "buick skyhawk"
20.0 8 262.0 110.0 3221. 13.5 75 1 "chevrolet monza 2+2"
13.0 8 302.0 129.0 3169. 12.0 75 1 "ford mustang ii"
29.0 4 97.00 75.00 2171. 16.0 75 3 "toyota corolla"
23.0 4 140.0 83.00 2639. 17.0 75 1 "ford pinto"
20.0 6 232.0 100.0 2914. 16.0 75 1 "amc gremlin"
23.0 4 140.0 78.00 2592. 18.5 75 1 "pontiac astro"
24.0 4 134.0 96.00 2702. 13.5 75 3 "toyota corona"
25.0 4 90.00 71.00 2223. 16.5 75 2 "volkswagen dasher"
24.0 4 119.0 97.00 2545. 17.0 75 3 "datsun 710"
18.0 6 171.0 97.00 2984. 14.5 75 1 "ford pinto"
29.0 4 90.00 70.00 1937. 14.0 75 2 "volkswagen rabbit"
19.0 6 232.0 90.00 3211. 17.0 75 1 "amc pacer"
23.0 4 115.0 95.00 2694. 15.0 75 2 "audi 100ls"
23.0 4 120.0 88.00 2957. 17.0 75 2 "peugeot 504"
22.0 4 121.0 98.00 2945. 14.5 75 2 "volvo 244dl"
25.0 4 121.0 115.0 2671. 13.5 75 2 "saab 99le"
33.0 4 91.00 53.00 1795. 17.5 75 3 "honda civic cvcc"
28.0 4 107.0 86.00 2464. 15.5 76 2 "fiat 131"
25.0 4 116.0 81.00 2220. 16.9 76 2 "opel 1900"
25.0 4 140.0 92.00 2572. 14.9 76 1 "capri ii"
26.0 4 98.00 79.00 2255. 17.7 76 1 "dodge colt"
27.0 4 101.0 83.00 2202. 15.3 76 2 "renault 12tl"
17.5 8 305.0 140.0 4215. 13.0 76 1 "chevrolet chevelle malibu classic"
16.0 8 318.0 150.0 4190. 13.0 76 1 "dodge coronet brougham"
15.5 8 304.0 120.0 3962. 13.9 76 1 "amc matador"
14.5 8 351.0 152.0 4215. 12.8 76 1 "ford gran torino"
22.0 6 225.0 100.0 3233. 15.4 76 1 "plymouth valiant"
22.0 6 250.0 105.0 3353. 14.5 76 1 "chevrolet nova"
24.0 6 200.0 81.00 3012. 17.6 76 1 "ford maverick"
22.5 6 232.0 90.00 3085. 17.6 76 1 "amc hornet"
29.0 4 85.00 52.00 2035. 22.2 76 1 "chevrolet chevette"
24.5 4 98.00 60.00 2164. 22.1 76 1 "chevrolet woody"
29.0 4 90.00 70.00 1937. 14.2 76 2 "vw rabbit"
33.0 4 91.00 53.00 1795. 17.4 76 3 "honda civic"
20.0 6 225.0 100.0 3651. 17.7 76 1 "dodge aspen se"
18.0 6 250.0 78.00 3574. 21.0 76 1 "ford granada ghia"
18.5 6 250.0 110.0 3645. 16.2 76 1 "pontiac ventura sj"
17.5 6 258.0 95.00 3193. 17.8 76 1 "amc pacer d/l"
29.5 4 97.00 71.00 1825. 12.2 76 2 "volkswagen rabbit"
32.0 4 85.00 70.00 1990. 17.0 76 3 "datsun b-210"
28.0 4 97.00 75.00 2155. 16.4 76 3 "toyota corolla"
26.5 4 140.0 72.00 2565. 13.6 76 1 "ford pinto"
20.0 4 130.0 102.0 3150. 15.7 76 2 "volvo 245"
13.0 8 318.0 150.0 3940. 13.2 76 1 "plymouth volare premier v8"
19.0 4 120.0 88.00 3270. 21.9 76 2 "peugeot 504"
19.0 6 156.0 108.0 2930. 15.5 76 3 "toyota mark ii"
16.5 6 168.0 120.0 3820. 16.7 76 2 "mercedes-benz 280s"
16.5 8 350.0 180.0 4380. 12.1 76 1 "cadillac seville"
13.0 8 350.0 145.0 4055. 12.0 76 1 "chevy c10"
13.0 8 302.0 130.0 3870. 15.0 76 1 "ford f108"
13.0 8 318.0 150.0 3755. 14.0 76 1 "dodge d100"
31.5 4 98.00 68.00 2045. 18.5 77 3 "honda accord cvcc"
30.0 4 111.0 80.00 2155. 14.8 77 1 "buick opel isuzu deluxe"
36.0 4 79.00 58.00 1825. 18.6 77 2 "renault 5 gtl"
25.5 4 122.0 96.00 2300. 15.5 77 1 "plymouth arrow gs"
33.5 4 85.00 70.00 1945. 16.8 77 3 "datsun f-10 hatchback"
17.5 8 305.0 145.0 3880. 12.5 77 1 "chevrolet caprice classic"
17.0 8 260.0 110.0 4060. 19.0 77 1 "oldsmobile cutlass supreme"
15.5 8 318.0 145.0 4140. 13.7 77 1 "dodge monaco brougham"
15.0 8 302.0 130.0 4295. 14.9 77 1 "mercury cougar brougham"
17.5 6 250.0 110.0 3520. 16.4 77 1 "chevrolet concours"
20.5 6 231.0 105.0 3425. 16.9 77 1 "buick skylark"
19.0 6 225.0 100.0 3630. 17.7 77 1 "plymouth volare custom"
18.5 6 250.0 98.00 3525. 19.0 77 1 "ford granada"
16.0 8 400.0 180.0 4220. 11.1 77 1 "pontiac grand prix lj"
15.5 8 350.0 170.0 4165. 11.4 77 1 "chevrolet monte carlo landau"
15.5 8 400.0 190.0 4325. 12.2 77 1 "chrysler cordoba"
16.0 8 351.0 149.0 4335. 14.5 77 1 "ford thunderbird"
29.0 4 97.00 78.00 1940. 14.5 77 2 "volkswagen rabbit custom"
24.5 4 151.0 88.00 2740. 16.0 77 1 "pontiac sunbird coupe"
26.0 4 97.00 75.00 2265. 18.2 77 3 "toyota corolla liftback"
25.5 4 140.0 89.00 2755. 15.8 77 1 "ford mustang ii 2+2"
30.5 4 98.00 63.00 2051. 17.0 77 1 "chevrolet chevette"
33.5 4 98.00 83.00 2075. 15.9 77 1 "dodge colt m/m"
30.0 4 97.00 67.00 1985. 16.4 77 3 "subaru dl"
30.5 4 97.00 78.00 2190. 14.1 77 2 "volkswagen dasher"
22.0 6 146.0 97.00 2815. 14.5 77 3 "datsun 810"
21.5 4 121.0 110.0 2600. 12.8 77 2 "bmw 320i"
21.5 3 80.00 110.0 2720. 13.5 77 3 "mazda rx-4"
43.1 4 90.00 48.00 1985. 21.5 78 2 "volkswagen rabbit custom diesel"
36.1 4 98.00 66.00 1800. 14.4 78 1 "ford fiesta"
32.8 4 78.00 52.00 1985. 19.4 78 3 "mazda glc deluxe"
39.4 4 85.00 70.00 2070. 18.6 78 3 "datsun b210 gx"
36.1 4 91.00 60.00 1800. 16.4 78 3 "honda civic cvcc"
19.9 8 260.0 110.0 3365. 15.5 78 1 "oldsmobile cutlass salon brougham"
19.4 8 318.0 140.0 3735. 13.2 78 1 "dodge diplomat"
20.2 8 302.0 139.0 3570. 12.8 78 1 "mercury monarch ghia"
19.2 6 231.0 105.0 3535. 19.2 78 1 "pontiac phoenix lj"
20.5 6 200.0 95.00 3155. 18.2 78 1 "chevrolet malibu"
20.2 6 200.0 85.00 2965. 15.8 78 1 "ford fairmont (auto)"
25.1 4 140.0 88.00 2720. 15.4 78 1 "ford fairmont (man)"
20.5 6 225.0 100.0 3430. 17.2 78 1 "plymouth volare"
19.4 6 232.0 90.00 3210. 17.2 78 1 "amc concord"
20.6 6 231.0 105.0 3380. 15.8 78 1 "buick century special"
20.8 6 200.0 85.00 3070. 16.7 78 1 "mercury zephyr"
18.6 6 225.0 110.0 3620. 18.7 78 1 "dodge aspen"
18.1 6 258.0 120.0 3410. 15.1 78 1 "amc concord d/l"
19.2 8 305.0 145.0 3425. 13.2 78 1 "chevrolet monte carlo landau"
17.7 6 231.0 165.0 3445. 13.4 78 1 "buick regal sport coupe (turbo)"
18.1 8 302.0 139.0 3205. 11.2 78 1 "ford futura"
17.5 8 318.0 140.0 4080. 13.7 78 1 "dodge magnum xe"
30.0 4 98.00 68.00 2155. 16.5 78 1 "chevrolet chevette"
27.5 4 134.0 95.00 2560. 14.2 78 3 "toyota corona"
27.2 4 119.0 97.00 2300. 14.7 78 3 "datsun 510"
30.9 4 105.0 75.00 2230. 14.5 78 1 "dodge omni"
21.1 4 134.0 95.00 2515. 14.8 78 3 "toyota celica gt liftback"
23.2 4 156.0 105.0 2745. 16.7 78 1 "plymouth sapporo"
23.8 4 151.0 85.00 2855. 17.6 78 1 "oldsmobile starfire sx"
23.9 4 119.0 97.00 2405. 14.9 78 3 "datsun 200-sx"
20.3 5 131.0 103.0 2830. 15.9 78 2 "audi 5000"
17.0 6 163.0 125.0 3140. 13.6 78 2 "volvo 264gl"
21.6 4 121.0 115.0 2795. 15.7 78 2 "saab 99gle"
16.2 6 163.0 133.0 3410. 15.8 78 2 "peugeot 604sl"
31.5 4 89.00 71.00 1990. 14.9 78 2 "volkswagen scirocco"
29.5 4 98.00 68.00 2135. 16.6 78 3 "honda accord lx"
21.5 6 231.0 115.0 3245. 15.4 79 1 "pontiac lemans v6"
19.8 6 200.0 85.00 2990. 18.2 79 1 "mercury zephyr 6"
22.3 4 140.0 88.00 2890. 17.3 79 1 "ford fairmont 4"
20.2 6 232.0 90.00 3265. 18.2 79 1 "amc concord dl 6"
20.6 6 225.0 110.0 3360. 16.6 79 1 "dodge aspen 6"
17.0 8 305.0 130.0 3840. 15.4 79 1 "chevrolet caprice classic"
17.6 8 302.0 129.0 3725. 13.4 79 1 "ford ltd landau"
16.5 8 351.0 138.0 3955. 13.2 79 1 "mercury grand marquis"
18.2 8 318.0 135.0 3830. 15.2 79 1 "dodge st. regis"
16.9 8 350.0 155.0 4360. 14.9 79 1 "buick estate wagon (sw)"
15.5 8 351.0 142.0 4054. 14.3 79 1 "ford country squire (sw)"
19.2 8 267.0 125.0 3605. 15.0 79 1 "chevrolet malibu classic (sw)"
18.5 8 360.0 150.0 3940. 13.0 79 1 "chrysler lebaron town @ country (sw)"
31.9 4 89.00 71.00 1925. 14.0 79 2 "vw rabbit custom"
34.1 4 86.00 65.00 1975. 15.2 79 3 "maxda glc deluxe"
35.7 4 98.00 80.00 1915. 14.4 79 1 "dodge colt hatchback custom"
27.4 4 121.0 80.00 2670. 15.0 79 1 "amc spirit dl"
25.4 5 183.0 77.00 3530. 20.1 79 2 "mercedes benz 300d"
23.0 8 350.0 125.0 3900. 17.4 79 1 "cadillac eldorado"
27.2 4 141.0 71.00 3190. 24.8 79 2 "peugeot 504"
23.9 8 260.0 90.00 3420. 22.2 79 1 "oldsmobile cutlass salon brougham"
34.2 4 105.0 70.00 2200. 13.2 79 1 "plymouth horizon"
34.5 4 105.0 70.00 2150. 14.9 79 1 "plymouth horizon tc3"
31.8 4 85.00 65.00 2020. 19.2 79 3 "datsun 210"
37.3 4 91.00 69.00 2130. 14.7 79 2 "fiat strada custom"
28.4 4 151.0 90.00 2670. 16.0 79 1 "buick skylark limited"
28.8 6 173.0 115.0 2595. 11.3 79 1 "chevrolet citation"
26.8 6 173.0 115.0 2700. 12.9 79 1 "oldsmobile omega brougham"
33.5 4 151.0 90.00 2556. 13.2 79 1 "pontiac phoenix"
41.5 4 98.00 76.00 2144. 14.7 80 2 "vw rabbit"
38.1 4 89.00 60.00 1968. 18.8 80 3 "toyota corolla tercel"
32.1 4 98.00 70.00 2120. 15.5 80 1 "chevrolet chevette"
37.2 4 86.00 65.00 2019. 16.4 80 3 "datsun 310"
28.0 4 151.0 90.00 2678. 16.5 80 1 "chevrolet citation"
26.4 4 140.0 88.00 2870. 18.1 80 1 "ford fairmont"
24.3 4 151.0 90.00 3003. 20.1 80 1 "amc concord"
19.1 6 225.0 90.00 3381. 18.7 80 1 "dodge aspen"
34.3 4 97.00 78.00 2188. 15.8 80 2 "audi 4000"
29.8 4 134.0 90.00 2711. 15.5 80 3 "toyota corona liftback"
31.3 4 120.0 75.00 2542. 17.5 80 3 "mazda 626"
37.0 4 119.0 92.00 2434. 15.0 80 3 "datsun 510 hatchback"
32.2 4 108.0 75.00 2265. 15.2 80 3 "toyota corolla"
46.6 4 86.00 65.00 2110. 17.9 80 3 "mazda glc"
27.9 4 156.0 105.0 2800. 14.4 80 1 "dodge colt"
40.8 4 85.00 65.00 2110. 19.2 80 3 "datsun 210"
44.3 4 90.00 48.00 2085. 21.7 80 2 "vw rabbit c (diesel)"
43.4 4 90.00 48.00 2335. 23.7 80 2 "vw dasher (diesel)"
36.4 5 121.0 67.00 2950. 19.9 80 2 "audi 5000s (diesel)"
30.0 4 146.0 67.00 3250. 21.8 80 2 "mercedes-benz 240d"
44.6 4 91.00 67.00 1850. 13.8 80 3 "honda civic 1500 gl"
40.9 4 85.00 ? 1835. 17.3 80 2 "renault lecar deluxe"
33.8 4 97.00 67.00 2145. 18.0 80 3 "subaru dl"
29.8 4 89.00 62.00 1845. 15.3 80 2 "vokswagen rabbit"
32.7 6 168.0 132.0 2910. 11.4 80 3 "datsun 280-zx"
23.7 3 70.00 100.0 2420. 12.5 80 3 "mazda rx-7 gs"
35.0 4 122.0 88.00 2500. 15.1 80 2 "triumph tr7 coupe"
23.6 4 140.0 ? 2905. 14.3 80 1 "ford mustang cobra"
32.4 4 107.0 72.00 2290. 17.0 80 3 "honda accord"
27.2 4 135.0 84.00 2490. 15.7 81 1 "plymouth reliant"
26.6 4 151.0 84.00 2635. 16.4 81 1 "buick skylark"
25.8 4 156.0 92.00 2620. 14.4 81 1 "dodge aries wagon (sw)"
23.5 6 173.0 110.0 2725. 12.6 81 1 "chevrolet citation"
30.0 4 135.0 84.00 2385. 12.9 81 1 "plymouth reliant"
39.1 4 79.00 58.00 1755. 16.9 81 3 "toyota starlet"
39.0 4 86.00 64.00 1875. 16.4 81 1 "plymouth champ"
35.1 4 81.00 60.00 1760. 16.1 81 3 "honda civic 1300"
32.3 4 97.00 67.00 2065. 17.8 81 3 "subaru"
37.0 4 85.00 65.00 1975. 19.4 81 3 "datsun 210 mpg"
37.7 4 89.00 62.00 2050. 17.3 81 3 "toyota tercel"
34.1 4 91.00 68.00 1985. 16.0 81 3 "mazda glc 4"
34.7 4 105.0 63.00 2215. 14.9 81 1 "plymouth horizon 4"
34.4 4 98.00 65.00 2045. 16.2 81 1 "ford escort 4w"
29.9 4 98.00 65.00 2380. 20.7 81 1 "ford escort 2h"
33.0 4 105.0 74.00 2190. 14.2 81 2 "volkswagen jetta"
34.5 4 100.0 ? 2320. 15.8 81 2 "renault 18i"
33.7 4 107.0 75.00 2210. 14.4 81 3 "honda prelude"
32.4 4 108.0 75.00 2350. 16.8 81 3 "toyota corolla"
32.9 4 119.0 100.0 2615. 14.8 81 3 "datsun 200sx"
31.6 4 120.0 74.00 2635. 18.3 81 3 "mazda 626"
28.1 4 141.0 80.00 3230. 20.4 81 2 "peugeot 505s turbo diesel"
30.7 6 145.0 76.00 3160. 19.6 81 2 "volvo diesel"
25.4 6 168.0 116.0 2900. 12.6 81 3 "toyota cressida"
24.2 6 146.0 120.0 2930. 13.8 81 3 "datsun 810 maxima"
22.4 6 231.0 110.0 3415. 15.8 81 1 "buick century"
26.6 8 350.0 105.0 3725. 19.0 81 1 "oldsmobile cutlass ls"
20.2 6 200.0 88.00 3060. 17.1 81 1 "ford granada gl"
17.6 6 225.0 85.00 3465. 16.6 81 1 "chrysler lebaron salon"
28.0 4 112.0 88.00 2605. 19.6 82 1 "chevrolet cavalier"
27.0 4 112.0 88.00 2640. 18.6 82 1 "chevrolet cavalier wagon"
34.0 4 112.0 88.00 2395. 18.0 82 1 "chevrolet cavalier 2-door"
31.0 4 112.0 85.00 2575. 16.2 82 1 "pontiac j2000 se hatchback"
29.0 4 135.0 84.00 2525. 16.0 82 1 "dodge aries se"
27.0 4 151.0 90.00 2735. 18.0 82 1 "pontiac phoenix"
24.0 4 140.0 92.00 2865. 16.4 82 1 "ford fairmont futura"
23.0 4 151.0 ? 3035. 20.5 82 1 "amc concord dl"
36.0 4 105.0 74.00 1980. 15.3 82 2 "volkswagen rabbit l"
37.0 4 91.00 68.00 2025. 18.2 82 3 "mazda glc custom l"
31.0 4 91.00 68.00 1970. 17.6 82 3 "mazda glc custom"
38.0 4 105.0 63.00 2125. 14.7 82 1 "plymouth horizon miser"
36.0 4 98.00 70.00 2125. 17.3 82 1 "mercury lynx l"
36.0 4 120.0 88.00 2160. 14.5 82 3 "nissan stanza xe"
36.0 4 107.0 75.00 2205. 14.5 82 3 "honda accord"
34.0 4 108.0 70.00 2245 16.9 82 3 "toyota corolla"
38.0 4 91.00 67.00 1965. 15.0 82 3 "honda civic"
32.0 4 91.00 67.00 1965. 15.7 82 3 "honda civic (auto)"
38.0 4 91.00 67.00 1995. 16.2 82 3 "datsun 310 gx"
25.0 6 181.0 110.0 2945. 16.4 82 1 "buick century limited"
38.0 6 262.0 85.00 3015. 17.0 82 1 "oldsmobile cutlass ciera (diesel)"
26.0 4 156.0 92.00 2585. 14.5 82 1 "chrysler lebaron medallion"
22.0 6 232.0 112.0 2835 14.7 82 1 "ford granada l"
32.0 4 144.0 96.00 2665. 13.9 82 3 "toyota celica gt"
36.0 4 135.0 84.00 2370. 13.0 82 1 "dodge charger 2.2"
27.0 4 151.0 90.00 2950. 17.3 82 1 "chevrolet camaro"
27.0 4 140.0 86.00 2790. 15.6 82 1 "ford mustang gl"
44.0 4 97.00 52.00 2130. 24.6 82 2 "vw pickup"
32.0 4 135.0 84.00 2295. 11.6 82 1 "dodge rampage"
28.0 4 120.0 79.00 2625. 18.6 82 1 "ford ranger"
31.0 4 119.0 82.00 2720. 19.4 82 1 "chevy s-10"

45
data/auto-mpg.names Normal file
View file

@ -0,0 +1,45 @@
1. Title: Auto-Mpg Data
2. Sources:
(a) Origin: This dataset was taken from the StatLib library which is
maintained at Carnegie Mellon University. The dataset was
used in the 1983 American Statistical Association Exposition.
(c) Date: July 7, 1993
3. Past Usage:
- See 2b (above)
- Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning.
In Proceedings on the Tenth International Conference of Machine
Learning, 236-243, University of Massachusetts, Amherst. Morgan
Kaufmann.
4. Relevant Information:
This dataset is a slightly modified version of the dataset provided in
the StatLib library. In line with the use by Ross Quinlan (1993) in
predicting the attribute "mpg", 8 of the original instances were removed
because they had unknown values for the "mpg" attribute. The original
dataset is available in the file "auto-mpg.data-original".
"The data concerns city-cycle fuel consumption in miles per gallon,
to be predicted in terms of 3 multivalued discrete and 5 continuous
attributes." (Quinlan, 1993)
5. Number of Instances: 398
6. Number of Attributes: 9 including the class attribute
7. Attribute Information:
1. mpg: continuous
2. cylinders: multi-valued discrete
3. displacement: continuous
4. horsepower: continuous
5. weight: continuous
6. acceleration: continuous
7. model year: multi-valued discrete
8. origin: multi-valued discrete
9. car name: string (unique for each instance)
8. Missing Attribute Values: horsepower has 6 missing values

398
data/clean.csv Normal file
View file

@ -0,0 +1,398 @@
mpg,cylinders,displacement,horsepower,weight,acceleration,model_year,origin,car_name
18.0,8,307.0,130.0,3504.0,12.0,70,1,chevrolet chevelle malibu
15.0,8,350.0,165.0,3693.0,11.5,70,1,buick skylark 320
18.0,8,318.0,150.0,3436.0,11.0,70,1,plymouth satellite
16.0,8,304.0,150.0,3433.0,12.0,70,1,amc rebel sst
17.0,8,302.0,140.0,3449.0,10.5,70,1,ford torino
15.0,8,429.0,198.0,4341.0,10.0,70,1,ford galaxie 500
14.0,8,454.0,220.0,4354.0,9.0,70,1,chevrolet impala
14.0,8,440.0,215.0,4312.0,8.5,70,1,plymouth fury iii
14.0,8,455.0,225.0,4425.0,10.0,70,1,pontiac catalina
15.0,8,390.0,190.0,3850.0,8.5,70,1,amc ambassador dpl
15.0,8,383.0,170.0,3563.0,10.0,70,1,dodge challenger se
14.0,8,340.0,160.0,3609.0,8.0,70,1,plymouth 'cuda 340
15.0,8,400.0,150.0,3761.0,9.5,70,1,chevrolet monte carlo
14.0,8,455.0,225.0,3086.0,10.0,70,1,buick estate wagon (sw)
24.0,4,113.0,95.0,2372.0,15.0,70,3,toyota corona mark ii
22.0,6,198.0,95.0,2833.0,15.5,70,1,plymouth duster
18.0,6,199.0,97.0,2774.0,15.5,70,1,amc hornet
21.0,6,200.0,85.0,2587.0,16.0,70,1,ford maverick
27.0,4,97.0,88.0,2130.0,14.5,70,3,datsun pl510
26.0,4,97.0,46.0,1835.0,20.5,70,2,volkswagen 1131 deluxe sedan
25.0,4,110.0,87.0,2672.0,17.5,70,2,peugeot 504
24.0,4,107.0,90.0,2430.0,14.5,70,2,audi 100 ls
25.0,4,104.0,95.0,2375.0,17.5,70,2,saab 99e
26.0,4,121.0,113.0,2234.0,12.5,70,2,bmw 2002
21.0,6,199.0,90.0,2648.0,15.0,70,1,amc gremlin
10.0,8,360.0,215.0,4615.0,14.0,70,1,ford f250
10.0,8,307.0,200.0,4376.0,15.0,70,1,chevy c20
11.0,8,318.0,210.0,4382.0,13.5,70,1,dodge d200
9.0,8,304.0,193.0,4732.0,18.5,70,1,hi 1200d
27.0,4,97.0,88.0,2130.0,14.5,71,3,datsun pl510
28.0,4,140.0,90.0,2264.0,15.5,71,1,chevrolet vega 2300
25.0,4,113.0,95.0,2228.0,14.0,71,3,toyota corona
25.0,4,98.0,75.0,2046.0,19.0,71,1,ford pinto
19.0,6,232.0,100.0,2634.0,13.0,71,1,amc gremlin
16.0,6,225.0,105.0,3439.0,15.5,71,1,plymouth satellite custom
17.0,6,250.0,100.0,3329.0,15.5,71,1,chevrolet chevelle malibu
19.0,6,250.0,88.0,3302.0,15.5,71,1,ford torino 500
18.0,6,232.0,100.0,3288.0,15.5,71,1,amc matador
14.0,8,350.0,165.0,4209.0,12.0,71,1,chevrolet impala
14.0,8,400.0,175.0,4464.0,11.5,71,1,pontiac catalina brougham
14.0,8,351.0,153.0,4154.0,13.5,71,1,ford galaxie 500
14.0,8,318.0,150.0,4096.0,13.0,71,1,plymouth fury iii
12.0,8,383.0,180.0,4955.0,11.5,71,1,dodge monaco (sw)
13.0,8,400.0,170.0,4746.0,12.0,71,1,ford country squire (sw)
13.0,8,400.0,175.0,5140.0,12.0,71,1,pontiac safari (sw)
18.0,6,258.0,110.0,2962.0,13.5,71,1,amc hornet sportabout (sw)
22.0,4,140.0,72.0,2408.0,19.0,71,1,chevrolet vega (sw)
19.0,6,250.0,100.0,3282.0,15.0,71,1,pontiac firebird
18.0,6,250.0,88.0,3139.0,14.5,71,1,ford mustang
23.0,4,122.0,86.0,2220.0,14.0,71,1,mercury capri 2000
28.0,4,116.0,90.0,2123.0,14.0,71,2,opel 1900
30.0,4,79.0,70.0,2074.0,19.5,71,2,peugeot 304
30.0,4,88.0,76.0,2065.0,14.5,71,2,fiat 124b
31.0,4,71.0,65.0,1773.0,19.0,71,3,toyota corolla 1200
35.0,4,72.0,69.0,1613.0,18.0,71,3,datsun 1200
27.0,4,97.0,60.0,1834.0,19.0,71,2,volkswagen model 111
26.0,4,91.0,70.0,1955.0,20.5,71,1,plymouth cricket
24.0,4,113.0,95.0,2278.0,15.5,72,3,toyota corona hardtop
25.0,4,97.5,80.0,2126.0,17.0,72,1,dodge colt hardtop
23.0,4,97.0,54.0,2254.0,23.5,72,2,volkswagen type 3
20.0,4,140.0,90.0,2408.0,19.5,72,1,chevrolet vega
21.0,4,122.0,86.0,2226.0,16.5,72,1,ford pinto runabout
13.0,8,350.0,165.0,4274.0,12.0,72,1,chevrolet impala
14.0,8,400.0,175.0,4385.0,12.0,72,1,pontiac catalina
15.0,8,318.0,150.0,4135.0,13.5,72,1,plymouth fury iii
14.0,8,351.0,153.0,4129.0,13.0,72,1,ford galaxie 500
17.0,8,304.0,150.0,3672.0,11.5,72,1,amc ambassador sst
11.0,8,429.0,208.0,4633.0,11.0,72,1,mercury marquis
13.0,8,350.0,155.0,4502.0,13.5,72,1,buick lesabre custom
12.0,8,350.0,160.0,4456.0,13.5,72,1,oldsmobile delta 88 royale
13.0,8,400.0,190.0,4422.0,12.5,72,1,chrysler newport royal
19.0,3,70.0,97.0,2330.0,13.5,72,3,mazda rx2 coupe
15.0,8,304.0,150.0,3892.0,12.5,72,1,amc matador (sw)
13.0,8,307.0,130.0,4098.0,14.0,72,1,chevrolet chevelle concours (sw)
13.0,8,302.0,140.0,4294.0,16.0,72,1,ford gran torino (sw)
14.0,8,318.0,150.0,4077.0,14.0,72,1,plymouth satellite custom (sw)
18.0,4,121.0,112.0,2933.0,14.5,72,2,volvo 145e (sw)
22.0,4,121.0,76.0,2511.0,18.0,72,2,volkswagen 411 (sw)
21.0,4,120.0,87.0,2979.0,19.5,72,2,peugeot 504 (sw)
26.0,4,96.0,69.0,2189.0,18.0,72,2,renault 12 (sw)
22.0,4,122.0,86.0,2395.0,16.0,72,1,ford pinto (sw)
28.0,4,97.0,92.0,2288.0,17.0,72,3,datsun 510 (sw)
23.0,4,120.0,97.0,2506.0,14.5,72,3,toyouta corona mark ii (sw)
28.0,4,98.0,80.0,2164.0,15.0,72,1,dodge colt (sw)
27.0,4,97.0,88.0,2100.0,16.5,72,3,toyota corolla 1600 (sw)
13.0,8,350.0,175.0,4100.0,13.0,73,1,buick century 350
14.0,8,304.0,150.0,3672.0,11.5,73,1,amc matador
13.0,8,350.0,145.0,3988.0,13.0,73,1,chevrolet malibu
14.0,8,302.0,137.0,4042.0,14.5,73,1,ford gran torino
15.0,8,318.0,150.0,3777.0,12.5,73,1,dodge coronet custom
12.0,8,429.0,198.0,4952.0,11.5,73,1,mercury marquis brougham
13.0,8,400.0,150.0,4464.0,12.0,73,1,chevrolet caprice classic
13.0,8,351.0,158.0,4363.0,13.0,73,1,ford ltd
14.0,8,318.0,150.0,4237.0,14.5,73,1,plymouth fury gran sedan
13.0,8,440.0,215.0,4735.0,11.0,73,1,chrysler new yorker brougham
12.0,8,455.0,225.0,4951.0,11.0,73,1,buick electra 225 custom
13.0,8,360.0,175.0,3821.0,11.0,73,1,amc ambassador brougham
18.0,6,225.0,105.0,3121.0,16.5,73,1,plymouth valiant
16.0,6,250.0,100.0,3278.0,18.0,73,1,chevrolet nova custom
18.0,6,232.0,100.0,2945.0,16.0,73,1,amc hornet
18.0,6,250.0,88.0,3021.0,16.5,73,1,ford maverick
23.0,6,198.0,95.0,2904.0,16.0,73,1,plymouth duster
26.0,4,97.0,46.0,1950.0,21.0,73,2,volkswagen super beetle
11.0,8,400.0,150.0,4997.0,14.0,73,1,chevrolet impala
12.0,8,400.0,167.0,4906.0,12.5,73,1,ford country
13.0,8,360.0,170.0,4654.0,13.0,73,1,plymouth custom suburb
12.0,8,350.0,180.0,4499.0,12.5,73,1,oldsmobile vista cruiser
18.0,6,232.0,100.0,2789.0,15.0,73,1,amc gremlin
20.0,4,97.0,88.0,2279.0,19.0,73,3,toyota carina
21.0,4,140.0,72.0,2401.0,19.5,73,1,chevrolet vega
22.0,4,108.0,94.0,2379.0,16.5,73,3,datsun 610
18.0,3,70.0,90.0,2124.0,13.5,73,3,maxda rx3
19.0,4,122.0,85.0,2310.0,18.5,73,1,ford pinto
21.0,6,155.0,107.0,2472.0,14.0,73,1,mercury capri v6
26.0,4,98.0,90.0,2265.0,15.5,73,2,fiat 124 sport coupe
15.0,8,350.0,145.0,4082.0,13.0,73,1,chevrolet monte carlo s
16.0,8,400.0,230.0,4278.0,9.5,73,1,pontiac grand prix
29.0,4,68.0,49.0,1867.0,19.5,73,2,fiat 128
24.0,4,116.0,75.0,2158.0,15.5,73,2,opel manta
20.0,4,114.0,91.0,2582.0,14.0,73,2,audi 100ls
19.0,4,121.0,112.0,2868.0,15.5,73,2,volvo 144ea
15.0,8,318.0,150.0,3399.0,11.0,73,1,dodge dart custom
24.0,4,121.0,110.0,2660.0,14.0,73,2,saab 99le
20.0,6,156.0,122.0,2807.0,13.5,73,3,toyota mark ii
11.0,8,350.0,180.0,3664.0,11.0,73,1,oldsmobile omega
20.0,6,198.0,95.0,3102.0,16.5,74,1,plymouth duster
21.0,6,200.0,85.0,2875.0,17.0,74,1,ford maverick
19.0,6,232.0,100.0,2901.0,16.0,74,1,amc hornet
15.0,6,250.0,100.0,3336.0,17.0,74,1,chevrolet nova
31.0,4,79.0,67.0,1950.0,19.0,74,3,datsun b210
26.0,4,122.0,80.0,2451.0,16.5,74,1,ford pinto
32.0,4,71.0,65.0,1836.0,21.0,74,3,toyota corolla 1200
25.0,4,140.0,75.0,2542.0,17.0,74,1,chevrolet vega
16.0,6,250.0,100.0,3781.0,17.0,74,1,chevrolet chevelle malibu classic
16.0,6,258.0,110.0,3632.0,18.0,74,1,amc matador
18.0,6,225.0,105.0,3613.0,16.5,74,1,plymouth satellite sebring
16.0,8,302.0,140.0,4141.0,14.0,74,1,ford gran torino
13.0,8,350.0,150.0,4699.0,14.5,74,1,buick century luxus (sw)
14.0,8,318.0,150.0,4457.0,13.5,74,1,dodge coronet custom (sw)
14.0,8,302.0,140.0,4638.0,16.0,74,1,ford gran torino (sw)
14.0,8,304.0,150.0,4257.0,15.5,74,1,amc matador (sw)
29.0,4,98.0,83.0,2219.0,16.5,74,2,audi fox
26.0,4,79.0,67.0,1963.0,15.5,74,2,volkswagen dasher
26.0,4,97.0,78.0,2300.0,14.5,74,2,opel manta
31.0,4,76.0,52.0,1649.0,16.5,74,3,toyota corona
32.0,4,83.0,61.0,2003.0,19.0,74,3,datsun 710
28.0,4,90.0,75.0,2125.0,14.5,74,1,dodge colt
24.0,4,90.0,75.0,2108.0,15.5,74,2,fiat 128
26.0,4,116.0,75.0,2246.0,14.0,74,2,fiat 124 tc
24.0,4,120.0,97.0,2489.0,15.0,74,3,honda civic
26.0,4,108.0,93.0,2391.0,15.5,74,3,subaru
31.0,4,79.0,67.0,2000.0,16.0,74,2,fiat x1.9
19.0,6,225.0,95.0,3264.0,16.0,75,1,plymouth valiant custom
18.0,6,250.0,105.0,3459.0,16.0,75,1,chevrolet nova
15.0,6,250.0,72.0,3432.0,21.0,75,1,mercury monarch
15.0,6,250.0,72.0,3158.0,19.5,75,1,ford maverick
16.0,8,400.0,170.0,4668.0,11.5,75,1,pontiac catalina
15.0,8,350.0,145.0,4440.0,14.0,75,1,chevrolet bel air
16.0,8,318.0,150.0,4498.0,14.5,75,1,plymouth grand fury
14.0,8,351.0,148.0,4657.0,13.5,75,1,ford ltd
17.0,6,231.0,110.0,3907.0,21.0,75,1,buick century
16.0,6,250.0,105.0,3897.0,18.5,75,1,chevroelt chevelle malibu
15.0,6,258.0,110.0,3730.0,19.0,75,1,amc matador
18.0,6,225.0,95.0,3785.0,19.0,75,1,plymouth fury
21.0,6,231.0,110.0,3039.0,15.0,75,1,buick skyhawk
20.0,8,262.0,110.0,3221.0,13.5,75,1,chevrolet monza 2+2
13.0,8,302.0,129.0,3169.0,12.0,75,1,ford mustang ii
29.0,4,97.0,75.0,2171.0,16.0,75,3,toyota corolla
23.0,4,140.0,83.0,2639.0,17.0,75,1,ford pinto
20.0,6,232.0,100.0,2914.0,16.0,75,1,amc gremlin
23.0,4,140.0,78.0,2592.0,18.5,75,1,pontiac astro
24.0,4,134.0,96.0,2702.0,13.5,75,3,toyota corona
25.0,4,90.0,71.0,2223.0,16.5,75,2,volkswagen dasher
24.0,4,119.0,97.0,2545.0,17.0,75,3,datsun 710
18.0,6,171.0,97.0,2984.0,14.5,75,1,ford pinto
29.0,4,90.0,70.0,1937.0,14.0,75,2,volkswagen rabbit
19.0,6,232.0,90.0,3211.0,17.0,75,1,amc pacer
23.0,4,115.0,95.0,2694.0,15.0,75,2,audi 100ls
23.0,4,120.0,88.0,2957.0,17.0,75,2,peugeot 504
22.0,4,121.0,98.0,2945.0,14.5,75,2,volvo 244dl
25.0,4,121.0,115.0,2671.0,13.5,75,2,saab 99le
33.0,4,91.0,53.0,1795.0,17.5,75,3,honda civic cvcc
28.0,4,107.0,86.0,2464.0,15.5,76,2,fiat 131
25.0,4,116.0,81.0,2220.0,16.9,76,2,opel 1900
25.0,4,140.0,92.0,2572.0,14.9,76,1,capri ii
26.0,4,98.0,79.0,2255.0,17.7,76,1,dodge colt
27.0,4,101.0,83.0,2202.0,15.3,76,2,renault 12tl
17.5,8,305.0,140.0,4215.0,13.0,76,1,chevrolet chevelle malibu classic
16.0,8,318.0,150.0,4190.0,13.0,76,1,dodge coronet brougham
15.5,8,304.0,120.0,3962.0,13.9,76,1,amc matador
14.5,8,351.0,152.0,4215.0,12.8,76,1,ford gran torino
22.0,6,225.0,100.0,3233.0,15.4,76,1,plymouth valiant
22.0,6,250.0,105.0,3353.0,14.5,76,1,chevrolet nova
24.0,6,200.0,81.0,3012.0,17.6,76,1,ford maverick
22.5,6,232.0,90.0,3085.0,17.6,76,1,amc hornet
29.0,4,85.0,52.0,2035.0,22.2,76,1,chevrolet chevette
24.5,4,98.0,60.0,2164.0,22.1,76,1,chevrolet woody
29.0,4,90.0,70.0,1937.0,14.2,76,2,vw rabbit
33.0,4,91.0,53.0,1795.0,17.4,76,3,honda civic
20.0,6,225.0,100.0,3651.0,17.7,76,1,dodge aspen se
18.0,6,250.0,78.0,3574.0,21.0,76,1,ford granada ghia
18.5,6,250.0,110.0,3645.0,16.2,76,1,pontiac ventura sj
17.5,6,258.0,95.0,3193.0,17.8,76,1,amc pacer d/l
29.5,4,97.0,71.0,1825.0,12.2,76,2,volkswagen rabbit
32.0,4,85.0,70.0,1990.0,17.0,76,3,datsun b-210
28.0,4,97.0,75.0,2155.0,16.4,76,3,toyota corolla
26.5,4,140.0,72.0,2565.0,13.6,76,1,ford pinto
20.0,4,130.0,102.0,3150.0,15.7,76,2,volvo 245
13.0,8,318.0,150.0,3940.0,13.2,76,1,plymouth volare premier v8
19.0,4,120.0,88.0,3270.0,21.9,76,2,peugeot 504
19.0,6,156.0,108.0,2930.0,15.5,76,3,toyota mark ii
16.5,6,168.0,120.0,3820.0,16.7,76,2,mercedes-benz 280s
16.5,8,350.0,180.0,4380.0,12.1,76,1,cadillac seville
13.0,8,350.0,145.0,4055.0,12.0,76,1,chevy c10
13.0,8,302.0,130.0,3870.0,15.0,76,1,ford f108
13.0,8,318.0,150.0,3755.0,14.0,76,1,dodge d100
31.5,4,98.0,68.0,2045.0,18.5,77,3,honda accord cvcc
30.0,4,111.0,80.0,2155.0,14.8,77,1,buick opel isuzu deluxe
36.0,4,79.0,58.0,1825.0,18.6,77,2,renault 5 gtl
25.5,4,122.0,96.0,2300.0,15.5,77,1,plymouth arrow gs
33.5,4,85.0,70.0,1945.0,16.8,77,3,datsun f-10 hatchback
17.5,8,305.0,145.0,3880.0,12.5,77,1,chevrolet caprice classic
17.0,8,260.0,110.0,4060.0,19.0,77,1,oldsmobile cutlass supreme
15.5,8,318.0,145.0,4140.0,13.7,77,1,dodge monaco brougham
15.0,8,302.0,130.0,4295.0,14.9,77,1,mercury cougar brougham
17.5,6,250.0,110.0,3520.0,16.4,77,1,chevrolet concours
20.5,6,231.0,105.0,3425.0,16.9,77,1,buick skylark
19.0,6,225.0,100.0,3630.0,17.7,77,1,plymouth volare custom
18.5,6,250.0,98.0,3525.0,19.0,77,1,ford granada
16.0,8,400.0,180.0,4220.0,11.1,77,1,pontiac grand prix lj
15.5,8,350.0,170.0,4165.0,11.4,77,1,chevrolet monte carlo landau
15.5,8,400.0,190.0,4325.0,12.2,77,1,chrysler cordoba
16.0,8,351.0,149.0,4335.0,14.5,77,1,ford thunderbird
29.0,4,97.0,78.0,1940.0,14.5,77,2,volkswagen rabbit custom
24.5,4,151.0,88.0,2740.0,16.0,77,1,pontiac sunbird coupe
26.0,4,97.0,75.0,2265.0,18.2,77,3,toyota corolla liftback
25.5,4,140.0,89.0,2755.0,15.8,77,1,ford mustang ii 2+2
30.5,4,98.0,63.0,2051.0,17.0,77,1,chevrolet chevette
33.5,4,98.0,83.0,2075.0,15.9,77,1,dodge colt m/m
30.0,4,97.0,67.0,1985.0,16.4,77,3,subaru dl
30.5,4,97.0,78.0,2190.0,14.1,77,2,volkswagen dasher
22.0,6,146.0,97.0,2815.0,14.5,77,3,datsun 810
21.5,4,121.0,110.0,2600.0,12.8,77,2,bmw 320i
21.5,3,80.0,110.0,2720.0,13.5,77,3,mazda rx-4
43.1,4,90.0,48.0,1985.0,21.5,78,2,volkswagen rabbit custom diesel
36.1,4,98.0,66.0,1800.0,14.4,78,1,ford fiesta
32.8,4,78.0,52.0,1985.0,19.4,78,3,mazda glc deluxe
39.4,4,85.0,70.0,2070.0,18.6,78,3,datsun b210 gx
36.1,4,91.0,60.0,1800.0,16.4,78,3,honda civic cvcc
19.9,8,260.0,110.0,3365.0,15.5,78,1,oldsmobile cutlass salon brougham
19.4,8,318.0,140.0,3735.0,13.2,78,1,dodge diplomat
20.2,8,302.0,139.0,3570.0,12.8,78,1,mercury monarch ghia
19.2,6,231.0,105.0,3535.0,19.2,78,1,pontiac phoenix lj
20.5,6,200.0,95.0,3155.0,18.2,78,1,chevrolet malibu
20.2,6,200.0,85.0,2965.0,15.8,78,1,ford fairmont (auto)
25.1,4,140.0,88.0,2720.0,15.4,78,1,ford fairmont (man)
20.5,6,225.0,100.0,3430.0,17.2,78,1,plymouth volare
19.4,6,232.0,90.0,3210.0,17.2,78,1,amc concord
20.6,6,231.0,105.0,3380.0,15.8,78,1,buick century special
20.8,6,200.0,85.0,3070.0,16.7,78,1,mercury zephyr
18.6,6,225.0,110.0,3620.0,18.7,78,1,dodge aspen
18.1,6,258.0,120.0,3410.0,15.1,78,1,amc concord d/l
19.2,8,305.0,145.0,3425.0,13.2,78,1,chevrolet monte carlo landau
17.7,6,231.0,165.0,3445.0,13.4,78,1,buick regal sport coupe (turbo)
18.1,8,302.0,139.0,3205.0,11.2,78,1,ford futura
17.5,8,318.0,140.0,4080.0,13.7,78,1,dodge magnum xe
30.0,4,98.0,68.0,2155.0,16.5,78,1,chevrolet chevette
27.5,4,134.0,95.0,2560.0,14.2,78,3,toyota corona
27.2,4,119.0,97.0,2300.0,14.7,78,3,datsun 510
30.9,4,105.0,75.0,2230.0,14.5,78,1,dodge omni
21.1,4,134.0,95.0,2515.0,14.8,78,3,toyota celica gt liftback
23.2,4,156.0,105.0,2745.0,16.7,78,1,plymouth sapporo
23.8,4,151.0,85.0,2855.0,17.6,78,1,oldsmobile starfire sx
23.9,4,119.0,97.0,2405.0,14.9,78,3,datsun 200-sx
20.3,5,131.0,103.0,2830.0,15.9,78,2,audi 5000
17.0,6,163.0,125.0,3140.0,13.6,78,2,volvo 264gl
21.6,4,121.0,115.0,2795.0,15.7,78,2,saab 99gle
16.2,6,163.0,133.0,3410.0,15.8,78,2,peugeot 604sl
31.5,4,89.0,71.0,1990.0,14.9,78,2,volkswagen scirocco
29.5,4,98.0,68.0,2135.0,16.6,78,3,honda accord lx
21.5,6,231.0,115.0,3245.0,15.4,79,1,pontiac lemans v6
19.8,6,200.0,85.0,2990.0,18.2,79,1,mercury zephyr 6
22.3,4,140.0,88.0,2890.0,17.3,79,1,ford fairmont 4
20.2,6,232.0,90.0,3265.0,18.2,79,1,amc concord dl 6
20.6,6,225.0,110.0,3360.0,16.6,79,1,dodge aspen 6
17.0,8,305.0,130.0,3840.0,15.4,79,1,chevrolet caprice classic
17.6,8,302.0,129.0,3725.0,13.4,79,1,ford ltd landau
16.5,8,351.0,138.0,3955.0,13.2,79,1,mercury grand marquis
18.2,8,318.0,135.0,3830.0,15.2,79,1,dodge st. regis
16.9,8,350.0,155.0,4360.0,14.9,79,1,buick estate wagon (sw)
15.5,8,351.0,142.0,4054.0,14.3,79,1,ford country squire (sw)
19.2,8,267.0,125.0,3605.0,15.0,79,1,chevrolet malibu classic (sw)
18.5,8,360.0,150.0,3940.0,13.0,79,1,chrysler lebaron town @ country (sw)
31.9,4,89.0,71.0,1925.0,14.0,79,2,vw rabbit custom
34.1,4,86.0,65.0,1975.0,15.2,79,3,maxda glc deluxe
35.7,4,98.0,80.0,1915.0,14.4,79,1,dodge colt hatchback custom
27.4,4,121.0,80.0,2670.0,15.0,79,1,amc spirit dl
25.4,5,183.0,77.0,3530.0,20.1,79,2,mercedes benz 300d
23.0,8,350.0,125.0,3900.0,17.4,79,1,cadillac eldorado
27.2,4,141.0,71.0,3190.0,24.8,79,2,peugeot 504
23.9,8,260.0,90.0,3420.0,22.2,79,1,oldsmobile cutlass salon brougham
34.2,4,105.0,70.0,2200.0,13.2,79,1,plymouth horizon
34.5,4,105.0,70.0,2150.0,14.9,79,1,plymouth horizon tc3
31.8,4,85.0,65.0,2020.0,19.2,79,3,datsun 210
37.3,4,91.0,69.0,2130.0,14.7,79,2,fiat strada custom
28.4,4,151.0,90.0,2670.0,16.0,79,1,buick skylark limited
28.8,6,173.0,115.0,2595.0,11.3,79,1,chevrolet citation
26.8,6,173.0,115.0,2700.0,12.9,79,1,oldsmobile omega brougham
33.5,4,151.0,90.0,2556.0,13.2,79,1,pontiac phoenix
41.5,4,98.0,76.0,2144.0,14.7,80,2,vw rabbit
38.1,4,89.0,60.0,1968.0,18.8,80,3,toyota corolla tercel
32.1,4,98.0,70.0,2120.0,15.5,80,1,chevrolet chevette
37.2,4,86.0,65.0,2019.0,16.4,80,3,datsun 310
28.0,4,151.0,90.0,2678.0,16.5,80,1,chevrolet citation
26.4,4,140.0,88.0,2870.0,18.1,80,1,ford fairmont
24.3,4,151.0,90.0,3003.0,20.1,80,1,amc concord
19.1,6,225.0,90.0,3381.0,18.7,80,1,dodge aspen
34.3,4,97.0,78.0,2188.0,15.8,80,2,audi 4000
29.8,4,134.0,90.0,2711.0,15.5,80,3,toyota corona liftback
31.3,4,120.0,75.0,2542.0,17.5,80,3,mazda 626
37.0,4,119.0,92.0,2434.0,15.0,80,3,datsun 510 hatchback
32.2,4,108.0,75.0,2265.0,15.2,80,3,toyota corolla
46.6,4,86.0,65.0,2110.0,17.9,80,3,mazda glc
27.9,4,156.0,105.0,2800.0,14.4,80,1,dodge colt
40.8,4,85.0,65.0,2110.0,19.2,80,3,datsun 210
44.3,4,90.0,48.0,2085.0,21.7,80,2,vw rabbit c (diesel)
43.4,4,90.0,48.0,2335.0,23.7,80,2,vw dasher (diesel)
36.4,5,121.0,67.0,2950.0,19.9,80,2,audi 5000s (diesel)
30.0,4,146.0,67.0,3250.0,21.8,80,2,mercedes-benz 240d
44.6,4,91.0,67.0,1850.0,13.8,80,3,honda civic 1500 gl
40.9,4,85.0,53.5,1835.0,17.3,80,2,renault lecar deluxe
33.8,4,97.0,67.0,2145.0,18.0,80,3,subaru dl
29.8,4,89.0,62.0,1845.0,15.3,80,2,vokswagen rabbit
32.7,6,168.0,132.0,2910.0,11.4,80,3,datsun 280-zx
23.7,3,70.0,100.0,2420.0,12.5,80,3,mazda rx-7 gs
35.0,4,122.0,88.0,2500.0,15.1,80,2,triumph tr7 coupe
32.4,4,107.0,72.0,2290.0,17.0,80,3,honda accord
27.2,4,135.0,84.0,2490.0,15.7,81,1,plymouth reliant
26.6,4,151.0,84.0,2635.0,16.4,81,1,buick skylark
25.8,4,156.0,92.0,2620.0,14.4,81,1,dodge aries wagon (sw)
23.5,6,173.0,110.0,2725.0,12.6,81,1,chevrolet citation
30.0,4,135.0,84.0,2385.0,12.9,81,1,plymouth reliant
39.1,4,79.0,58.0,1755.0,16.9,81,3,toyota starlet
39.0,4,86.0,64.0,1875.0,16.4,81,1,plymouth champ
35.1,4,81.0,60.0,1760.0,16.1,81,3,honda civic 1300
32.3,4,97.0,67.0,2065.0,17.8,81,3,subaru
37.0,4,85.0,65.0,1975.0,19.4,81,3,datsun 210 mpg
37.7,4,89.0,62.0,2050.0,17.3,81,3,toyota tercel
34.1,4,91.0,68.0,1985.0,16.0,81,3,mazda glc 4
34.7,4,105.0,63.0,2215.0,14.9,81,1,plymouth horizon 4
34.4,4,98.0,65.0,2045.0,16.2,81,1,ford escort 4w
29.9,4,98.0,65.0,2380.0,20.7,81,1,ford escort 2h
33.0,4,105.0,74.0,2190.0,14.2,81,2,volkswagen jetta
34.5,4,100.0,81.5,2320.0,15.8,81,2,renault 18i
33.7,4,107.0,75.0,2210.0,14.4,81,3,honda prelude
32.4,4,108.0,75.0,2350.0,16.8,81,3,toyota corolla
32.9,4,119.0,100.0,2615.0,14.8,81,3,datsun 200sx
31.6,4,120.0,74.0,2635.0,18.3,81,3,mazda 626
28.1,4,141.0,80.0,3230.0,20.4,81,2,peugeot 505s turbo diesel
30.7,6,145.0,76.0,3160.0,19.6,81,2,volvo diesel
25.4,6,168.0,116.0,2900.0,12.6,81,3,toyota cressida
24.2,6,146.0,120.0,2930.0,13.8,81,3,datsun 810 maxima
22.4,6,231.0,110.0,3415.0,15.8,81,1,buick century
26.6,8,350.0,105.0,3725.0,19.0,81,1,oldsmobile cutlass ls
20.2,6,200.0,88.0,3060.0,17.1,81,1,ford granada gl
17.6,6,225.0,85.0,3465.0,16.6,81,1,chrysler lebaron salon
28.0,4,112.0,88.0,2605.0,19.6,82,1,chevrolet cavalier
27.0,4,112.0,88.0,2640.0,18.6,82,1,chevrolet cavalier wagon
34.0,4,112.0,88.0,2395.0,18.0,82,1,chevrolet cavalier 2-door
31.0,4,112.0,85.0,2575.0,16.2,82,1,pontiac j2000 se hatchback
29.0,4,135.0,84.0,2525.0,16.0,82,1,dodge aries se
27.0,4,151.0,90.0,2735.0,18.0,82,1,pontiac phoenix
24.0,4,140.0,92.0,2865.0,16.4,82,1,ford fairmont futura
23.0,4,151.0,90.0,3035.0,20.5,82,1,amc concord dl
36.0,4,105.0,74.0,1980.0,15.3,82,2,volkswagen rabbit l
37.0,4,91.0,68.0,2025.0,18.2,82,3,mazda glc custom l
31.0,4,91.0,68.0,1970.0,17.6,82,3,mazda glc custom
38.0,4,105.0,63.0,2125.0,14.7,82,1,plymouth horizon miser
36.0,4,98.0,70.0,2125.0,17.3,82,1,mercury lynx l
36.0,4,120.0,88.0,2160.0,14.5,82,3,nissan stanza xe
36.0,4,107.0,75.0,2205.0,14.5,82,3,honda accord
34.0,4,108.0,70.0,2245.0,16.9,82,3,toyota corolla
38.0,4,91.0,67.0,1965.0,15.0,82,3,honda civic
32.0,4,91.0,67.0,1965.0,15.7,82,3,honda civic (auto)
38.0,4,91.0,67.0,1995.0,16.2,82,3,datsun 310 gx
25.0,6,181.0,110.0,2945.0,16.4,82,1,buick century limited
38.0,6,262.0,85.0,3015.0,17.0,82,1,oldsmobile cutlass ciera (diesel)
26.0,4,156.0,92.0,2585.0,14.5,82,1,chrysler lebaron medallion
22.0,6,232.0,112.0,2835.0,14.7,82,1,ford granada l
32.0,4,144.0,96.0,2665.0,13.9,82,3,toyota celica gt
36.0,4,135.0,84.0,2370.0,13.0,82,1,dodge charger 2.2
27.0,4,151.0,90.0,2950.0,17.3,82,1,chevrolet camaro
27.0,4,140.0,86.0,2790.0,15.6,82,1,ford mustang gl
44.0,4,97.0,52.0,2130.0,24.6,82,2,vw pickup
32.0,4,135.0,84.0,2295.0,11.6,82,1,dodge rampage
28.0,4,120.0,79.0,2625.0,18.6,82,1,ford ranger
31.0,4,119.0,82.0,2720.0,19.4,82,1,chevy s-10
1 mpg cylinders displacement horsepower weight acceleration model_year origin car_name
2 18.0 8 307.0 130.0 3504.0 12.0 70 1 chevrolet chevelle malibu
3 15.0 8 350.0 165.0 3693.0 11.5 70 1 buick skylark 320
4 18.0 8 318.0 150.0 3436.0 11.0 70 1 plymouth satellite
5 16.0 8 304.0 150.0 3433.0 12.0 70 1 amc rebel sst
6 17.0 8 302.0 140.0 3449.0 10.5 70 1 ford torino
7 15.0 8 429.0 198.0 4341.0 10.0 70 1 ford galaxie 500
8 14.0 8 454.0 220.0 4354.0 9.0 70 1 chevrolet impala
9 14.0 8 440.0 215.0 4312.0 8.5 70 1 plymouth fury iii
10 14.0 8 455.0 225.0 4425.0 10.0 70 1 pontiac catalina
11 15.0 8 390.0 190.0 3850.0 8.5 70 1 amc ambassador dpl
12 15.0 8 383.0 170.0 3563.0 10.0 70 1 dodge challenger se
13 14.0 8 340.0 160.0 3609.0 8.0 70 1 plymouth 'cuda 340
14 15.0 8 400.0 150.0 3761.0 9.5 70 1 chevrolet monte carlo
15 14.0 8 455.0 225.0 3086.0 10.0 70 1 buick estate wagon (sw)
16 24.0 4 113.0 95.0 2372.0 15.0 70 3 toyota corona mark ii
17 22.0 6 198.0 95.0 2833.0 15.5 70 1 plymouth duster
18 18.0 6 199.0 97.0 2774.0 15.5 70 1 amc hornet
19 21.0 6 200.0 85.0 2587.0 16.0 70 1 ford maverick
20 27.0 4 97.0 88.0 2130.0 14.5 70 3 datsun pl510
21 26.0 4 97.0 46.0 1835.0 20.5 70 2 volkswagen 1131 deluxe sedan
22 25.0 4 110.0 87.0 2672.0 17.5 70 2 peugeot 504
23 24.0 4 107.0 90.0 2430.0 14.5 70 2 audi 100 ls
24 25.0 4 104.0 95.0 2375.0 17.5 70 2 saab 99e
25 26.0 4 121.0 113.0 2234.0 12.5 70 2 bmw 2002
26 21.0 6 199.0 90.0 2648.0 15.0 70 1 amc gremlin
27 10.0 8 360.0 215.0 4615.0 14.0 70 1 ford f250
28 10.0 8 307.0 200.0 4376.0 15.0 70 1 chevy c20
29 11.0 8 318.0 210.0 4382.0 13.5 70 1 dodge d200
30 9.0 8 304.0 193.0 4732.0 18.5 70 1 hi 1200d
31 27.0 4 97.0 88.0 2130.0 14.5 71 3 datsun pl510
32 28.0 4 140.0 90.0 2264.0 15.5 71 1 chevrolet vega 2300
33 25.0 4 113.0 95.0 2228.0 14.0 71 3 toyota corona
34 25.0 4 98.0 75.0 2046.0 19.0 71 1 ford pinto
35 19.0 6 232.0 100.0 2634.0 13.0 71 1 amc gremlin
36 16.0 6 225.0 105.0 3439.0 15.5 71 1 plymouth satellite custom
37 17.0 6 250.0 100.0 3329.0 15.5 71 1 chevrolet chevelle malibu
38 19.0 6 250.0 88.0 3302.0 15.5 71 1 ford torino 500
39 18.0 6 232.0 100.0 3288.0 15.5 71 1 amc matador
40 14.0 8 350.0 165.0 4209.0 12.0 71 1 chevrolet impala
41 14.0 8 400.0 175.0 4464.0 11.5 71 1 pontiac catalina brougham
42 14.0 8 351.0 153.0 4154.0 13.5 71 1 ford galaxie 500
43 14.0 8 318.0 150.0 4096.0 13.0 71 1 plymouth fury iii
44 12.0 8 383.0 180.0 4955.0 11.5 71 1 dodge monaco (sw)
45 13.0 8 400.0 170.0 4746.0 12.0 71 1 ford country squire (sw)
46 13.0 8 400.0 175.0 5140.0 12.0 71 1 pontiac safari (sw)
47 18.0 6 258.0 110.0 2962.0 13.5 71 1 amc hornet sportabout (sw)
48 22.0 4 140.0 72.0 2408.0 19.0 71 1 chevrolet vega (sw)
49 19.0 6 250.0 100.0 3282.0 15.0 71 1 pontiac firebird
50 18.0 6 250.0 88.0 3139.0 14.5 71 1 ford mustang
51 23.0 4 122.0 86.0 2220.0 14.0 71 1 mercury capri 2000
52 28.0 4 116.0 90.0 2123.0 14.0 71 2 opel 1900
53 30.0 4 79.0 70.0 2074.0 19.5 71 2 peugeot 304
54 30.0 4 88.0 76.0 2065.0 14.5 71 2 fiat 124b
55 31.0 4 71.0 65.0 1773.0 19.0 71 3 toyota corolla 1200
56 35.0 4 72.0 69.0 1613.0 18.0 71 3 datsun 1200
57 27.0 4 97.0 60.0 1834.0 19.0 71 2 volkswagen model 111
58 26.0 4 91.0 70.0 1955.0 20.5 71 1 plymouth cricket
59 24.0 4 113.0 95.0 2278.0 15.5 72 3 toyota corona hardtop
60 25.0 4 97.5 80.0 2126.0 17.0 72 1 dodge colt hardtop
61 23.0 4 97.0 54.0 2254.0 23.5 72 2 volkswagen type 3
62 20.0 4 140.0 90.0 2408.0 19.5 72 1 chevrolet vega
63 21.0 4 122.0 86.0 2226.0 16.5 72 1 ford pinto runabout
64 13.0 8 350.0 165.0 4274.0 12.0 72 1 chevrolet impala
65 14.0 8 400.0 175.0 4385.0 12.0 72 1 pontiac catalina
66 15.0 8 318.0 150.0 4135.0 13.5 72 1 plymouth fury iii
67 14.0 8 351.0 153.0 4129.0 13.0 72 1 ford galaxie 500
68 17.0 8 304.0 150.0 3672.0 11.5 72 1 amc ambassador sst
69 11.0 8 429.0 208.0 4633.0 11.0 72 1 mercury marquis
70 13.0 8 350.0 155.0 4502.0 13.5 72 1 buick lesabre custom
71 12.0 8 350.0 160.0 4456.0 13.5 72 1 oldsmobile delta 88 royale
72 13.0 8 400.0 190.0 4422.0 12.5 72 1 chrysler newport royal
73 19.0 3 70.0 97.0 2330.0 13.5 72 3 mazda rx2 coupe
74 15.0 8 304.0 150.0 3892.0 12.5 72 1 amc matador (sw)
75 13.0 8 307.0 130.0 4098.0 14.0 72 1 chevrolet chevelle concours (sw)
76 13.0 8 302.0 140.0 4294.0 16.0 72 1 ford gran torino (sw)
77 14.0 8 318.0 150.0 4077.0 14.0 72 1 plymouth satellite custom (sw)
78 18.0 4 121.0 112.0 2933.0 14.5 72 2 volvo 145e (sw)
79 22.0 4 121.0 76.0 2511.0 18.0 72 2 volkswagen 411 (sw)
80 21.0 4 120.0 87.0 2979.0 19.5 72 2 peugeot 504 (sw)
81 26.0 4 96.0 69.0 2189.0 18.0 72 2 renault 12 (sw)
82 22.0 4 122.0 86.0 2395.0 16.0 72 1 ford pinto (sw)
83 28.0 4 97.0 92.0 2288.0 17.0 72 3 datsun 510 (sw)
84 23.0 4 120.0 97.0 2506.0 14.5 72 3 toyouta corona mark ii (sw)
85 28.0 4 98.0 80.0 2164.0 15.0 72 1 dodge colt (sw)
86 27.0 4 97.0 88.0 2100.0 16.5 72 3 toyota corolla 1600 (sw)
87 13.0 8 350.0 175.0 4100.0 13.0 73 1 buick century 350
88 14.0 8 304.0 150.0 3672.0 11.5 73 1 amc matador
89 13.0 8 350.0 145.0 3988.0 13.0 73 1 chevrolet malibu
90 14.0 8 302.0 137.0 4042.0 14.5 73 1 ford gran torino
91 15.0 8 318.0 150.0 3777.0 12.5 73 1 dodge coronet custom
92 12.0 8 429.0 198.0 4952.0 11.5 73 1 mercury marquis brougham
93 13.0 8 400.0 150.0 4464.0 12.0 73 1 chevrolet caprice classic
94 13.0 8 351.0 158.0 4363.0 13.0 73 1 ford ltd
95 14.0 8 318.0 150.0 4237.0 14.5 73 1 plymouth fury gran sedan
96 13.0 8 440.0 215.0 4735.0 11.0 73 1 chrysler new yorker brougham
97 12.0 8 455.0 225.0 4951.0 11.0 73 1 buick electra 225 custom
98 13.0 8 360.0 175.0 3821.0 11.0 73 1 amc ambassador brougham
99 18.0 6 225.0 105.0 3121.0 16.5 73 1 plymouth valiant
100 16.0 6 250.0 100.0 3278.0 18.0 73 1 chevrolet nova custom
101 18.0 6 232.0 100.0 2945.0 16.0 73 1 amc hornet
102 18.0 6 250.0 88.0 3021.0 16.5 73 1 ford maverick
103 23.0 6 198.0 95.0 2904.0 16.0 73 1 plymouth duster
104 26.0 4 97.0 46.0 1950.0 21.0 73 2 volkswagen super beetle
105 11.0 8 400.0 150.0 4997.0 14.0 73 1 chevrolet impala
106 12.0 8 400.0 167.0 4906.0 12.5 73 1 ford country
107 13.0 8 360.0 170.0 4654.0 13.0 73 1 plymouth custom suburb
108 12.0 8 350.0 180.0 4499.0 12.5 73 1 oldsmobile vista cruiser
109 18.0 6 232.0 100.0 2789.0 15.0 73 1 amc gremlin
110 20.0 4 97.0 88.0 2279.0 19.0 73 3 toyota carina
111 21.0 4 140.0 72.0 2401.0 19.5 73 1 chevrolet vega
112 22.0 4 108.0 94.0 2379.0 16.5 73 3 datsun 610
113 18.0 3 70.0 90.0 2124.0 13.5 73 3 maxda rx3
114 19.0 4 122.0 85.0 2310.0 18.5 73 1 ford pinto
115 21.0 6 155.0 107.0 2472.0 14.0 73 1 mercury capri v6
116 26.0 4 98.0 90.0 2265.0 15.5 73 2 fiat 124 sport coupe
117 15.0 8 350.0 145.0 4082.0 13.0 73 1 chevrolet monte carlo s
118 16.0 8 400.0 230.0 4278.0 9.5 73 1 pontiac grand prix
119 29.0 4 68.0 49.0 1867.0 19.5 73 2 fiat 128
120 24.0 4 116.0 75.0 2158.0 15.5 73 2 opel manta
121 20.0 4 114.0 91.0 2582.0 14.0 73 2 audi 100ls
122 19.0 4 121.0 112.0 2868.0 15.5 73 2 volvo 144ea
123 15.0 8 318.0 150.0 3399.0 11.0 73 1 dodge dart custom
124 24.0 4 121.0 110.0 2660.0 14.0 73 2 saab 99le
125 20.0 6 156.0 122.0 2807.0 13.5 73 3 toyota mark ii
126 11.0 8 350.0 180.0 3664.0 11.0 73 1 oldsmobile omega
127 20.0 6 198.0 95.0 3102.0 16.5 74 1 plymouth duster
128 21.0 6 200.0 85.0 2875.0 17.0 74 1 ford maverick
129 19.0 6 232.0 100.0 2901.0 16.0 74 1 amc hornet
130 15.0 6 250.0 100.0 3336.0 17.0 74 1 chevrolet nova
131 31.0 4 79.0 67.0 1950.0 19.0 74 3 datsun b210
132 26.0 4 122.0 80.0 2451.0 16.5 74 1 ford pinto
133 32.0 4 71.0 65.0 1836.0 21.0 74 3 toyota corolla 1200
134 25.0 4 140.0 75.0 2542.0 17.0 74 1 chevrolet vega
135 16.0 6 250.0 100.0 3781.0 17.0 74 1 chevrolet chevelle malibu classic
136 16.0 6 258.0 110.0 3632.0 18.0 74 1 amc matador
137 18.0 6 225.0 105.0 3613.0 16.5 74 1 plymouth satellite sebring
138 16.0 8 302.0 140.0 4141.0 14.0 74 1 ford gran torino
139 13.0 8 350.0 150.0 4699.0 14.5 74 1 buick century luxus (sw)
140 14.0 8 318.0 150.0 4457.0 13.5 74 1 dodge coronet custom (sw)
141 14.0 8 302.0 140.0 4638.0 16.0 74 1 ford gran torino (sw)
142 14.0 8 304.0 150.0 4257.0 15.5 74 1 amc matador (sw)
143 29.0 4 98.0 83.0 2219.0 16.5 74 2 audi fox
144 26.0 4 79.0 67.0 1963.0 15.5 74 2 volkswagen dasher
145 26.0 4 97.0 78.0 2300.0 14.5 74 2 opel manta
146 31.0 4 76.0 52.0 1649.0 16.5 74 3 toyota corona
147 32.0 4 83.0 61.0 2003.0 19.0 74 3 datsun 710
148 28.0 4 90.0 75.0 2125.0 14.5 74 1 dodge colt
149 24.0 4 90.0 75.0 2108.0 15.5 74 2 fiat 128
150 26.0 4 116.0 75.0 2246.0 14.0 74 2 fiat 124 tc
151 24.0 4 120.0 97.0 2489.0 15.0 74 3 honda civic
152 26.0 4 108.0 93.0 2391.0 15.5 74 3 subaru
153 31.0 4 79.0 67.0 2000.0 16.0 74 2 fiat x1.9
154 19.0 6 225.0 95.0 3264.0 16.0 75 1 plymouth valiant custom
155 18.0 6 250.0 105.0 3459.0 16.0 75 1 chevrolet nova
156 15.0 6 250.0 72.0 3432.0 21.0 75 1 mercury monarch
157 15.0 6 250.0 72.0 3158.0 19.5 75 1 ford maverick
158 16.0 8 400.0 170.0 4668.0 11.5 75 1 pontiac catalina
159 15.0 8 350.0 145.0 4440.0 14.0 75 1 chevrolet bel air
160 16.0 8 318.0 150.0 4498.0 14.5 75 1 plymouth grand fury
161 14.0 8 351.0 148.0 4657.0 13.5 75 1 ford ltd
162 17.0 6 231.0 110.0 3907.0 21.0 75 1 buick century
163 16.0 6 250.0 105.0 3897.0 18.5 75 1 chevroelt chevelle malibu
164 15.0 6 258.0 110.0 3730.0 19.0 75 1 amc matador
165 18.0 6 225.0 95.0 3785.0 19.0 75 1 plymouth fury
166 21.0 6 231.0 110.0 3039.0 15.0 75 1 buick skyhawk
167 20.0 8 262.0 110.0 3221.0 13.5 75 1 chevrolet monza 2+2
168 13.0 8 302.0 129.0 3169.0 12.0 75 1 ford mustang ii
169 29.0 4 97.0 75.0 2171.0 16.0 75 3 toyota corolla
170 23.0 4 140.0 83.0 2639.0 17.0 75 1 ford pinto
171 20.0 6 232.0 100.0 2914.0 16.0 75 1 amc gremlin
172 23.0 4 140.0 78.0 2592.0 18.5 75 1 pontiac astro
173 24.0 4 134.0 96.0 2702.0 13.5 75 3 toyota corona
174 25.0 4 90.0 71.0 2223.0 16.5 75 2 volkswagen dasher
175 24.0 4 119.0 97.0 2545.0 17.0 75 3 datsun 710
176 18.0 6 171.0 97.0 2984.0 14.5 75 1 ford pinto
177 29.0 4 90.0 70.0 1937.0 14.0 75 2 volkswagen rabbit
178 19.0 6 232.0 90.0 3211.0 17.0 75 1 amc pacer
179 23.0 4 115.0 95.0 2694.0 15.0 75 2 audi 100ls
180 23.0 4 120.0 88.0 2957.0 17.0 75 2 peugeot 504
181 22.0 4 121.0 98.0 2945.0 14.5 75 2 volvo 244dl
182 25.0 4 121.0 115.0 2671.0 13.5 75 2 saab 99le
183 33.0 4 91.0 53.0 1795.0 17.5 75 3 honda civic cvcc
184 28.0 4 107.0 86.0 2464.0 15.5 76 2 fiat 131
185 25.0 4 116.0 81.0 2220.0 16.9 76 2 opel 1900
186 25.0 4 140.0 92.0 2572.0 14.9 76 1 capri ii
187 26.0 4 98.0 79.0 2255.0 17.7 76 1 dodge colt
188 27.0 4 101.0 83.0 2202.0 15.3 76 2 renault 12tl
189 17.5 8 305.0 140.0 4215.0 13.0 76 1 chevrolet chevelle malibu classic
190 16.0 8 318.0 150.0 4190.0 13.0 76 1 dodge coronet brougham
191 15.5 8 304.0 120.0 3962.0 13.9 76 1 amc matador
192 14.5 8 351.0 152.0 4215.0 12.8 76 1 ford gran torino
193 22.0 6 225.0 100.0 3233.0 15.4 76 1 plymouth valiant
194 22.0 6 250.0 105.0 3353.0 14.5 76 1 chevrolet nova
195 24.0 6 200.0 81.0 3012.0 17.6 76 1 ford maverick
196 22.5 6 232.0 90.0 3085.0 17.6 76 1 amc hornet
197 29.0 4 85.0 52.0 2035.0 22.2 76 1 chevrolet chevette
198 24.5 4 98.0 60.0 2164.0 22.1 76 1 chevrolet woody
199 29.0 4 90.0 70.0 1937.0 14.2 76 2 vw rabbit
200 33.0 4 91.0 53.0 1795.0 17.4 76 3 honda civic
201 20.0 6 225.0 100.0 3651.0 17.7 76 1 dodge aspen se
202 18.0 6 250.0 78.0 3574.0 21.0 76 1 ford granada ghia
203 18.5 6 250.0 110.0 3645.0 16.2 76 1 pontiac ventura sj
204 17.5 6 258.0 95.0 3193.0 17.8 76 1 amc pacer d/l
205 29.5 4 97.0 71.0 1825.0 12.2 76 2 volkswagen rabbit
206 32.0 4 85.0 70.0 1990.0 17.0 76 3 datsun b-210
207 28.0 4 97.0 75.0 2155.0 16.4 76 3 toyota corolla
208 26.5 4 140.0 72.0 2565.0 13.6 76 1 ford pinto
209 20.0 4 130.0 102.0 3150.0 15.7 76 2 volvo 245
210 13.0 8 318.0 150.0 3940.0 13.2 76 1 plymouth volare premier v8
211 19.0 4 120.0 88.0 3270.0 21.9 76 2 peugeot 504
212 19.0 6 156.0 108.0 2930.0 15.5 76 3 toyota mark ii
213 16.5 6 168.0 120.0 3820.0 16.7 76 2 mercedes-benz 280s
214 16.5 8 350.0 180.0 4380.0 12.1 76 1 cadillac seville
215 13.0 8 350.0 145.0 4055.0 12.0 76 1 chevy c10
216 13.0 8 302.0 130.0 3870.0 15.0 76 1 ford f108
217 13.0 8 318.0 150.0 3755.0 14.0 76 1 dodge d100
218 31.5 4 98.0 68.0 2045.0 18.5 77 3 honda accord cvcc
219 30.0 4 111.0 80.0 2155.0 14.8 77 1 buick opel isuzu deluxe
220 36.0 4 79.0 58.0 1825.0 18.6 77 2 renault 5 gtl
221 25.5 4 122.0 96.0 2300.0 15.5 77 1 plymouth arrow gs
222 33.5 4 85.0 70.0 1945.0 16.8 77 3 datsun f-10 hatchback
223 17.5 8 305.0 145.0 3880.0 12.5 77 1 chevrolet caprice classic
224 17.0 8 260.0 110.0 4060.0 19.0 77 1 oldsmobile cutlass supreme
225 15.5 8 318.0 145.0 4140.0 13.7 77 1 dodge monaco brougham
226 15.0 8 302.0 130.0 4295.0 14.9 77 1 mercury cougar brougham
227 17.5 6 250.0 110.0 3520.0 16.4 77 1 chevrolet concours
228 20.5 6 231.0 105.0 3425.0 16.9 77 1 buick skylark
229 19.0 6 225.0 100.0 3630.0 17.7 77 1 plymouth volare custom
230 18.5 6 250.0 98.0 3525.0 19.0 77 1 ford granada
231 16.0 8 400.0 180.0 4220.0 11.1 77 1 pontiac grand prix lj
232 15.5 8 350.0 170.0 4165.0 11.4 77 1 chevrolet monte carlo landau
233 15.5 8 400.0 190.0 4325.0 12.2 77 1 chrysler cordoba
234 16.0 8 351.0 149.0 4335.0 14.5 77 1 ford thunderbird
235 29.0 4 97.0 78.0 1940.0 14.5 77 2 volkswagen rabbit custom
236 24.5 4 151.0 88.0 2740.0 16.0 77 1 pontiac sunbird coupe
237 26.0 4 97.0 75.0 2265.0 18.2 77 3 toyota corolla liftback
238 25.5 4 140.0 89.0 2755.0 15.8 77 1 ford mustang ii 2+2
239 30.5 4 98.0 63.0 2051.0 17.0 77 1 chevrolet chevette
240 33.5 4 98.0 83.0 2075.0 15.9 77 1 dodge colt m/m
241 30.0 4 97.0 67.0 1985.0 16.4 77 3 subaru dl
242 30.5 4 97.0 78.0 2190.0 14.1 77 2 volkswagen dasher
243 22.0 6 146.0 97.0 2815.0 14.5 77 3 datsun 810
244 21.5 4 121.0 110.0 2600.0 12.8 77 2 bmw 320i
245 21.5 3 80.0 110.0 2720.0 13.5 77 3 mazda rx-4
246 43.1 4 90.0 48.0 1985.0 21.5 78 2 volkswagen rabbit custom diesel
247 36.1 4 98.0 66.0 1800.0 14.4 78 1 ford fiesta
248 32.8 4 78.0 52.0 1985.0 19.4 78 3 mazda glc deluxe
249 39.4 4 85.0 70.0 2070.0 18.6 78 3 datsun b210 gx
250 36.1 4 91.0 60.0 1800.0 16.4 78 3 honda civic cvcc
251 19.9 8 260.0 110.0 3365.0 15.5 78 1 oldsmobile cutlass salon brougham
252 19.4 8 318.0 140.0 3735.0 13.2 78 1 dodge diplomat
253 20.2 8 302.0 139.0 3570.0 12.8 78 1 mercury monarch ghia
254 19.2 6 231.0 105.0 3535.0 19.2 78 1 pontiac phoenix lj
255 20.5 6 200.0 95.0 3155.0 18.2 78 1 chevrolet malibu
256 20.2 6 200.0 85.0 2965.0 15.8 78 1 ford fairmont (auto)
257 25.1 4 140.0 88.0 2720.0 15.4 78 1 ford fairmont (man)
258 20.5 6 225.0 100.0 3430.0 17.2 78 1 plymouth volare
259 19.4 6 232.0 90.0 3210.0 17.2 78 1 amc concord
260 20.6 6 231.0 105.0 3380.0 15.8 78 1 buick century special
261 20.8 6 200.0 85.0 3070.0 16.7 78 1 mercury zephyr
262 18.6 6 225.0 110.0 3620.0 18.7 78 1 dodge aspen
263 18.1 6 258.0 120.0 3410.0 15.1 78 1 amc concord d/l
264 19.2 8 305.0 145.0 3425.0 13.2 78 1 chevrolet monte carlo landau
265 17.7 6 231.0 165.0 3445.0 13.4 78 1 buick regal sport coupe (turbo)
266 18.1 8 302.0 139.0 3205.0 11.2 78 1 ford futura
267 17.5 8 318.0 140.0 4080.0 13.7 78 1 dodge magnum xe
268 30.0 4 98.0 68.0 2155.0 16.5 78 1 chevrolet chevette
269 27.5 4 134.0 95.0 2560.0 14.2 78 3 toyota corona
270 27.2 4 119.0 97.0 2300.0 14.7 78 3 datsun 510
271 30.9 4 105.0 75.0 2230.0 14.5 78 1 dodge omni
272 21.1 4 134.0 95.0 2515.0 14.8 78 3 toyota celica gt liftback
273 23.2 4 156.0 105.0 2745.0 16.7 78 1 plymouth sapporo
274 23.8 4 151.0 85.0 2855.0 17.6 78 1 oldsmobile starfire sx
275 23.9 4 119.0 97.0 2405.0 14.9 78 3 datsun 200-sx
276 20.3 5 131.0 103.0 2830.0 15.9 78 2 audi 5000
277 17.0 6 163.0 125.0 3140.0 13.6 78 2 volvo 264gl
278 21.6 4 121.0 115.0 2795.0 15.7 78 2 saab 99gle
279 16.2 6 163.0 133.0 3410.0 15.8 78 2 peugeot 604sl
280 31.5 4 89.0 71.0 1990.0 14.9 78 2 volkswagen scirocco
281 29.5 4 98.0 68.0 2135.0 16.6 78 3 honda accord lx
282 21.5 6 231.0 115.0 3245.0 15.4 79 1 pontiac lemans v6
283 19.8 6 200.0 85.0 2990.0 18.2 79 1 mercury zephyr 6
284 22.3 4 140.0 88.0 2890.0 17.3 79 1 ford fairmont 4
285 20.2 6 232.0 90.0 3265.0 18.2 79 1 amc concord dl 6
286 20.6 6 225.0 110.0 3360.0 16.6 79 1 dodge aspen 6
287 17.0 8 305.0 130.0 3840.0 15.4 79 1 chevrolet caprice classic
288 17.6 8 302.0 129.0 3725.0 13.4 79 1 ford ltd landau
289 16.5 8 351.0 138.0 3955.0 13.2 79 1 mercury grand marquis
290 18.2 8 318.0 135.0 3830.0 15.2 79 1 dodge st. regis
291 16.9 8 350.0 155.0 4360.0 14.9 79 1 buick estate wagon (sw)
292 15.5 8 351.0 142.0 4054.0 14.3 79 1 ford country squire (sw)
293 19.2 8 267.0 125.0 3605.0 15.0 79 1 chevrolet malibu classic (sw)
294 18.5 8 360.0 150.0 3940.0 13.0 79 1 chrysler lebaron town @ country (sw)
295 31.9 4 89.0 71.0 1925.0 14.0 79 2 vw rabbit custom
296 34.1 4 86.0 65.0 1975.0 15.2 79 3 maxda glc deluxe
297 35.7 4 98.0 80.0 1915.0 14.4 79 1 dodge colt hatchback custom
298 27.4 4 121.0 80.0 2670.0 15.0 79 1 amc spirit dl
299 25.4 5 183.0 77.0 3530.0 20.1 79 2 mercedes benz 300d
300 23.0 8 350.0 125.0 3900.0 17.4 79 1 cadillac eldorado
301 27.2 4 141.0 71.0 3190.0 24.8 79 2 peugeot 504
302 23.9 8 260.0 90.0 3420.0 22.2 79 1 oldsmobile cutlass salon brougham
303 34.2 4 105.0 70.0 2200.0 13.2 79 1 plymouth horizon
304 34.5 4 105.0 70.0 2150.0 14.9 79 1 plymouth horizon tc3
305 31.8 4 85.0 65.0 2020.0 19.2 79 3 datsun 210
306 37.3 4 91.0 69.0 2130.0 14.7 79 2 fiat strada custom
307 28.4 4 151.0 90.0 2670.0 16.0 79 1 buick skylark limited
308 28.8 6 173.0 115.0 2595.0 11.3 79 1 chevrolet citation
309 26.8 6 173.0 115.0 2700.0 12.9 79 1 oldsmobile omega brougham
310 33.5 4 151.0 90.0 2556.0 13.2 79 1 pontiac phoenix
311 41.5 4 98.0 76.0 2144.0 14.7 80 2 vw rabbit
312 38.1 4 89.0 60.0 1968.0 18.8 80 3 toyota corolla tercel
313 32.1 4 98.0 70.0 2120.0 15.5 80 1 chevrolet chevette
314 37.2 4 86.0 65.0 2019.0 16.4 80 3 datsun 310
315 28.0 4 151.0 90.0 2678.0 16.5 80 1 chevrolet citation
316 26.4 4 140.0 88.0 2870.0 18.1 80 1 ford fairmont
317 24.3 4 151.0 90.0 3003.0 20.1 80 1 amc concord
318 19.1 6 225.0 90.0 3381.0 18.7 80 1 dodge aspen
319 34.3 4 97.0 78.0 2188.0 15.8 80 2 audi 4000
320 29.8 4 134.0 90.0 2711.0 15.5 80 3 toyota corona liftback
321 31.3 4 120.0 75.0 2542.0 17.5 80 3 mazda 626
322 37.0 4 119.0 92.0 2434.0 15.0 80 3 datsun 510 hatchback
323 32.2 4 108.0 75.0 2265.0 15.2 80 3 toyota corolla
324 46.6 4 86.0 65.0 2110.0 17.9 80 3 mazda glc
325 27.9 4 156.0 105.0 2800.0 14.4 80 1 dodge colt
326 40.8 4 85.0 65.0 2110.0 19.2 80 3 datsun 210
327 44.3 4 90.0 48.0 2085.0 21.7 80 2 vw rabbit c (diesel)
328 43.4 4 90.0 48.0 2335.0 23.7 80 2 vw dasher (diesel)
329 36.4 5 121.0 67.0 2950.0 19.9 80 2 audi 5000s (diesel)
330 30.0 4 146.0 67.0 3250.0 21.8 80 2 mercedes-benz 240d
331 44.6 4 91.0 67.0 1850.0 13.8 80 3 honda civic 1500 gl
332 40.9 4 85.0 53.5 1835.0 17.3 80 2 renault lecar deluxe
333 33.8 4 97.0 67.0 2145.0 18.0 80 3 subaru dl
334 29.8 4 89.0 62.0 1845.0 15.3 80 2 vokswagen rabbit
335 32.7 6 168.0 132.0 2910.0 11.4 80 3 datsun 280-zx
336 23.7 3 70.0 100.0 2420.0 12.5 80 3 mazda rx-7 gs
337 35.0 4 122.0 88.0 2500.0 15.1 80 2 triumph tr7 coupe
338 32.4 4 107.0 72.0 2290.0 17.0 80 3 honda accord
339 27.2 4 135.0 84.0 2490.0 15.7 81 1 plymouth reliant
340 26.6 4 151.0 84.0 2635.0 16.4 81 1 buick skylark
341 25.8 4 156.0 92.0 2620.0 14.4 81 1 dodge aries wagon (sw)
342 23.5 6 173.0 110.0 2725.0 12.6 81 1 chevrolet citation
343 30.0 4 135.0 84.0 2385.0 12.9 81 1 plymouth reliant
344 39.1 4 79.0 58.0 1755.0 16.9 81 3 toyota starlet
345 39.0 4 86.0 64.0 1875.0 16.4 81 1 plymouth champ
346 35.1 4 81.0 60.0 1760.0 16.1 81 3 honda civic 1300
347 32.3 4 97.0 67.0 2065.0 17.8 81 3 subaru
348 37.0 4 85.0 65.0 1975.0 19.4 81 3 datsun 210 mpg
349 37.7 4 89.0 62.0 2050.0 17.3 81 3 toyota tercel
350 34.1 4 91.0 68.0 1985.0 16.0 81 3 mazda glc 4
351 34.7 4 105.0 63.0 2215.0 14.9 81 1 plymouth horizon 4
352 34.4 4 98.0 65.0 2045.0 16.2 81 1 ford escort 4w
353 29.9 4 98.0 65.0 2380.0 20.7 81 1 ford escort 2h
354 33.0 4 105.0 74.0 2190.0 14.2 81 2 volkswagen jetta
355 34.5 4 100.0 81.5 2320.0 15.8 81 2 renault 18i
356 33.7 4 107.0 75.0 2210.0 14.4 81 3 honda prelude
357 32.4 4 108.0 75.0 2350.0 16.8 81 3 toyota corolla
358 32.9 4 119.0 100.0 2615.0 14.8 81 3 datsun 200sx
359 31.6 4 120.0 74.0 2635.0 18.3 81 3 mazda 626
360 28.1 4 141.0 80.0 3230.0 20.4 81 2 peugeot 505s turbo diesel
361 30.7 6 145.0 76.0 3160.0 19.6 81 2 volvo diesel
362 25.4 6 168.0 116.0 2900.0 12.6 81 3 toyota cressida
363 24.2 6 146.0 120.0 2930.0 13.8 81 3 datsun 810 maxima
364 22.4 6 231.0 110.0 3415.0 15.8 81 1 buick century
365 26.6 8 350.0 105.0 3725.0 19.0 81 1 oldsmobile cutlass ls
366 20.2 6 200.0 88.0 3060.0 17.1 81 1 ford granada gl
367 17.6 6 225.0 85.0 3465.0 16.6 81 1 chrysler lebaron salon
368 28.0 4 112.0 88.0 2605.0 19.6 82 1 chevrolet cavalier
369 27.0 4 112.0 88.0 2640.0 18.6 82 1 chevrolet cavalier wagon
370 34.0 4 112.0 88.0 2395.0 18.0 82 1 chevrolet cavalier 2-door
371 31.0 4 112.0 85.0 2575.0 16.2 82 1 pontiac j2000 se hatchback
372 29.0 4 135.0 84.0 2525.0 16.0 82 1 dodge aries se
373 27.0 4 151.0 90.0 2735.0 18.0 82 1 pontiac phoenix
374 24.0 4 140.0 92.0 2865.0 16.4 82 1 ford fairmont futura
375 23.0 4 151.0 90.0 3035.0 20.5 82 1 amc concord dl
376 36.0 4 105.0 74.0 1980.0 15.3 82 2 volkswagen rabbit l
377 37.0 4 91.0 68.0 2025.0 18.2 82 3 mazda glc custom l
378 31.0 4 91.0 68.0 1970.0 17.6 82 3 mazda glc custom
379 38.0 4 105.0 63.0 2125.0 14.7 82 1 plymouth horizon miser
380 36.0 4 98.0 70.0 2125.0 17.3 82 1 mercury lynx l
381 36.0 4 120.0 88.0 2160.0 14.5 82 3 nissan stanza xe
382 36.0 4 107.0 75.0 2205.0 14.5 82 3 honda accord
383 34.0 4 108.0 70.0 2245.0 16.9 82 3 toyota corolla
384 38.0 4 91.0 67.0 1965.0 15.0 82 3 honda civic
385 32.0 4 91.0 67.0 1965.0 15.7 82 3 honda civic (auto)
386 38.0 4 91.0 67.0 1995.0 16.2 82 3 datsun 310 gx
387 25.0 6 181.0 110.0 2945.0 16.4 82 1 buick century limited
388 38.0 6 262.0 85.0 3015.0 17.0 82 1 oldsmobile cutlass ciera (diesel)
389 26.0 4 156.0 92.0 2585.0 14.5 82 1 chrysler lebaron medallion
390 22.0 6 232.0 112.0 2835.0 14.7 82 1 ford granada l
391 32.0 4 144.0 96.0 2665.0 13.9 82 3 toyota celica gt
392 36.0 4 135.0 84.0 2370.0 13.0 82 1 dodge charger 2.2
393 27.0 4 151.0 90.0 2950.0 17.3 82 1 chevrolet camaro
394 27.0 4 140.0 86.0 2790.0 15.6 82 1 ford mustang gl
395 44.0 4 97.0 52.0 2130.0 24.6 82 2 vw pickup
396 32.0 4 135.0 84.0 2295.0 11.6 82 1 dodge rampage
397 28.0 4 120.0 79.0 2625.0 18.6 82 1 ford ranger
398 31.0 4 119.0 82.0 2720.0 19.4 82 1 chevy s-10

398
data/y.csv Normal file
View file

@ -0,0 +1,398 @@
mpg
18.0
15.0
18.0
16.0
17.0
15.0
14.0
14.0
14.0
15.0
15.0
14.0
15.0
14.0
24.0
22.0
18.0
21.0
27.0
26.0
25.0
24.0
25.0
26.0
21.0
10.0
10.0
11.0
9.0
27.0
28.0
25.0
25.0
19.0
16.0
17.0
19.0
18.0
14.0
14.0
14.0
14.0
12.0
13.0
13.0
18.0
22.0
19.0
18.0
23.0
28.0
30.0
30.0
31.0
35.0
27.0
26.0
24.0
25.0
23.0
20.0
21.0
13.0
14.0
15.0
14.0
17.0
11.0
13.0
12.0
13.0
19.0
15.0
13.0
13.0
14.0
18.0
22.0
21.0
26.0
22.0
28.0
23.0
28.0
27.0
13.0
14.0
13.0
14.0
15.0
12.0
13.0
13.0
14.0
13.0
12.0
13.0
18.0
16.0
18.0
18.0
23.0
26.0
11.0
12.0
13.0
12.0
18.0
20.0
21.0
22.0
18.0
19.0
21.0
26.0
15.0
16.0
29.0
24.0
20.0
19.0
15.0
24.0
20.0
11.0
20.0
21.0
19.0
15.0
31.0
26.0
32.0
25.0
16.0
16.0
18.0
16.0
13.0
14.0
14.0
14.0
29.0
26.0
26.0
31.0
32.0
28.0
24.0
26.0
24.0
26.0
31.0
19.0
18.0
15.0
15.0
16.0
15.0
16.0
14.0
17.0
16.0
15.0
18.0
21.0
20.0
13.0
29.0
23.0
20.0
23.0
24.0
25.0
24.0
18.0
29.0
19.0
23.0
23.0
22.0
25.0
33.0
28.0
25.0
25.0
26.0
27.0
17.5
16.0
15.5
14.5
22.0
22.0
24.0
22.5
29.0
24.5
29.0
33.0
20.0
18.0
18.5
17.5
29.5
32.0
28.0
26.5
20.0
13.0
19.0
19.0
16.5
16.5
13.0
13.0
13.0
31.5
30.0
36.0
25.5
33.5
17.5
17.0
15.5
15.0
17.5
20.5
19.0
18.5
16.0
15.5
15.5
16.0
29.0
24.5
26.0
25.5
30.5
33.5
30.0
30.5
22.0
21.5
21.5
43.1
36.1
32.8
39.4
36.1
19.9
19.4
20.2
19.2
20.5
20.2
25.1
20.5
19.4
20.6
20.8
18.6
18.1
19.2
17.7
18.1
17.5
30.0
27.5
27.2
30.9
21.1
23.2
23.8
23.9
20.3
17.0
21.6
16.2
31.5
29.5
21.5
19.8
22.3
20.2
20.6
17.0
17.6
16.5
18.2
16.9
15.5
19.2
18.5
31.9
34.1
35.7
27.4
25.4
23.0
27.2
23.9
34.2
34.5
31.8
37.3
28.4
28.8
26.8
33.5
41.5
38.1
32.1
37.2
28.0
26.4
24.3
19.1
34.3
29.8
31.3
37.0
32.2
46.6
27.9
40.8
44.3
43.4
36.4
30.0
44.6
40.9
33.8
29.8
32.7
23.7
35.0
32.4
27.2
26.6
25.8
23.5
30.0
39.1
39.0
35.1
32.3
37.0
37.7
34.1
34.7
34.4
29.9
33.0
34.5
33.7
32.4
32.9
31.6
28.1
30.7
25.4
24.2
22.4
26.6
20.2
17.6
28.0
27.0
34.0
31.0
29.0
27.0
24.0
23.0
36.0
37.0
31.0
38.0
36.0
36.0
36.0
34.0
38.0
32.0
38.0
25.0
38.0
26.0
22.0
32.0
36.0
27.0
27.0
44.0
32.0
28.0
31.0
1 mpg
2 18.0
3 15.0
4 18.0
5 16.0
6 17.0
7 15.0
8 14.0
9 14.0
10 14.0
11 15.0
12 15.0
13 14.0
14 15.0
15 14.0
16 24.0
17 22.0
18 18.0
19 21.0
20 27.0
21 26.0
22 25.0
23 24.0
24 25.0
25 26.0
26 21.0
27 10.0
28 10.0
29 11.0
30 9.0
31 27.0
32 28.0
33 25.0
34 25.0
35 19.0
36 16.0
37 17.0
38 19.0
39 18.0
40 14.0
41 14.0
42 14.0
43 14.0
44 12.0
45 13.0
46 13.0
47 18.0
48 22.0
49 19.0
50 18.0
51 23.0
52 28.0
53 30.0
54 30.0
55 31.0
56 35.0
57 27.0
58 26.0
59 24.0
60 25.0
61 23.0
62 20.0
63 21.0
64 13.0
65 14.0
66 15.0
67 14.0
68 17.0
69 11.0
70 13.0
71 12.0
72 13.0
73 19.0
74 15.0
75 13.0
76 13.0
77 14.0
78 18.0
79 22.0
80 21.0
81 26.0
82 22.0
83 28.0
84 23.0
85 28.0
86 27.0
87 13.0
88 14.0
89 13.0
90 14.0
91 15.0
92 12.0
93 13.0
94 13.0
95 14.0
96 13.0
97 12.0
98 13.0
99 18.0
100 16.0
101 18.0
102 18.0
103 23.0
104 26.0
105 11.0
106 12.0
107 13.0
108 12.0
109 18.0
110 20.0
111 21.0
112 22.0
113 18.0
114 19.0
115 21.0
116 26.0
117 15.0
118 16.0
119 29.0
120 24.0
121 20.0
122 19.0
123 15.0
124 24.0
125 20.0
126 11.0
127 20.0
128 21.0
129 19.0
130 15.0
131 31.0
132 26.0
133 32.0
134 25.0
135 16.0
136 16.0
137 18.0
138 16.0
139 13.0
140 14.0
141 14.0
142 14.0
143 29.0
144 26.0
145 26.0
146 31.0
147 32.0
148 28.0
149 24.0
150 26.0
151 24.0
152 26.0
153 31.0
154 19.0
155 18.0
156 15.0
157 15.0
158 16.0
159 15.0
160 16.0
161 14.0
162 17.0
163 16.0
164 15.0
165 18.0
166 21.0
167 20.0
168 13.0
169 29.0
170 23.0
171 20.0
172 23.0
173 24.0
174 25.0
175 24.0
176 18.0
177 29.0
178 19.0
179 23.0
180 23.0
181 22.0
182 25.0
183 33.0
184 28.0
185 25.0
186 25.0
187 26.0
188 27.0
189 17.5
190 16.0
191 15.5
192 14.5
193 22.0
194 22.0
195 24.0
196 22.5
197 29.0
198 24.5
199 29.0
200 33.0
201 20.0
202 18.0
203 18.5
204 17.5
205 29.5
206 32.0
207 28.0
208 26.5
209 20.0
210 13.0
211 19.0
212 19.0
213 16.5
214 16.5
215 13.0
216 13.0
217 13.0
218 31.5
219 30.0
220 36.0
221 25.5
222 33.5
223 17.5
224 17.0
225 15.5
226 15.0
227 17.5
228 20.5
229 19.0
230 18.5
231 16.0
232 15.5
233 15.5
234 16.0
235 29.0
236 24.5
237 26.0
238 25.5
239 30.5
240 33.5
241 30.0
242 30.5
243 22.0
244 21.5
245 21.5
246 43.1
247 36.1
248 32.8
249 39.4
250 36.1
251 19.9
252 19.4
253 20.2
254 19.2
255 20.5
256 20.2
257 25.1
258 20.5
259 19.4
260 20.6
261 20.8
262 18.6
263 18.1
264 19.2
265 17.7
266 18.1
267 17.5
268 30.0
269 27.5
270 27.2
271 30.9
272 21.1
273 23.2
274 23.8
275 23.9
276 20.3
277 17.0
278 21.6
279 16.2
280 31.5
281 29.5
282 21.5
283 19.8
284 22.3
285 20.2
286 20.6
287 17.0
288 17.6
289 16.5
290 18.2
291 16.9
292 15.5
293 19.2
294 18.5
295 31.9
296 34.1
297 35.7
298 27.4
299 25.4
300 23.0
301 27.2
302 23.9
303 34.2
304 34.5
305 31.8
306 37.3
307 28.4
308 28.8
309 26.8
310 33.5
311 41.5
312 38.1
313 32.1
314 37.2
315 28.0
316 26.4
317 24.3
318 19.1
319 34.3
320 29.8
321 31.3
322 37.0
323 32.2
324 46.6
325 27.9
326 40.8
327 44.3
328 43.4
329 36.4
330 30.0
331 44.6
332 40.9
333 33.8
334 29.8
335 32.7
336 23.7
337 35.0
338 32.4
339 27.2
340 26.6
341 25.8
342 23.5
343 30.0
344 39.1
345 39.0
346 35.1
347 32.3
348 37.0
349 37.7
350 34.1
351 34.7
352 34.4
353 29.9
354 33.0
355 34.5
356 33.7
357 32.4
358 32.9
359 31.6
360 28.1
361 30.7
362 25.4
363 24.2
364 22.4
365 26.6
366 20.2
367 17.6
368 28.0
369 27.0
370 34.0
371 31.0
372 29.0
373 27.0
374 24.0
375 23.0
376 36.0
377 37.0
378 31.0
379 38.0
380 36.0
381 36.0
382 36.0
383 34.0
384 38.0
385 32.0
386 38.0
387 25.0
388 38.0
389 26.0
390 22.0
391 32.0
392 36.0
393 27.0
394 27.0
395 44.0
396 32.0
397 28.0
398 31.0

2216
eda.ipynb Normal file

File diff suppressed because it is too large Load diff

BIN
img/bore_size_joint.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

BIN
img/ci_per_cyl_joint.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

BIN
img/ci_per_lb_joint.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

BIN
img/cylinders_joint.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

BIN
img/displacement_joint.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

BIN
img/efficiency_joint.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

BIN
img/grunt_joint.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

BIN
img/gruntiness_joint.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

BIN
img/horsepower_joint.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

BIN
img/hp_per_ci_joint.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

BIN
img/load_joint.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

BIN
img/weight_joint.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

314
model.ipynb Normal file

File diff suppressed because one or more lines are too long

112
readme.md Normal file
View file

@ -0,0 +1,112 @@
# Analyzing Fuel Economy
Predicting MPG of a vehicle using a linear regression model. Success will be evaluated using r-squared and root mean square error scores over time as well as testing with some unseen, futuristic, and very different data compared to training set.
If you're curious about what goes into fuel economy, this should provide some insight on how it all works.
# Contents
1. [Clean](clean.ipynb) - Quick look to find any missing values, data of wrong types. Make sure data is in ranges that make sense
2. [EDA](eda.ipynb) - Investigate outliers and other items of interest. Manufacture some new features
3. [Model](model.ipynb) - Model and make predictions. Introduce some outside data
# Libs
* pandas
* numpy
* seaborn
* os
* matplotlib
* Ipython
* sklearn
# The Data
Using https://archive-beta.ics.uci.edu/ml/datasets/auto+mpg
1. Title: Auto-Mpg Data
2. Sources:
(a) Origin: This dataset was taken from the StatLib library which is
maintained at Carnegie Mellon University. The dataset was
used in the 1983 American Statistical Association Exposition.
(c) Date: July 7, 1993
3. Past Usage:
- See 2b (above)
- Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning.
In Proceedings on the Tenth International Conference of Machine
Learning, 236-243, University of Massachusetts, Amherst. Morgan
Kaufmann.
4. Relevant Information:
This dataset is a slightly modified version of the dataset provided in
the StatLib library. In line with the use by Ross Quinlan (1993) in
predicting the attribute "mpg", 8 of the original instances were removed
because they had unknown values for the "mpg" attribute. The original
dataset is available in the file "auto-mpg.data-original".
"The data concerns city-cycle fuel consumption in miles per gallon,
to be predicted in terms of 3 multivalued discrete and 5 continuous
attributes." (Quinlan, 1993)
5. Number of Instances: 398
6. Number of Attributes: 9 including the class attribute
7. Attribute Information:
1. mpg: continuous
2. cylinders: multi-valued discrete
3. displacement: continuous
4. horsepower: continuous
5. weight: continuous
6. acceleration: continuous
7. model year: multi-valued discrete
8. origin: multi-valued discrete
9. car name: string (unique for each instance)
8. Missing Attribute Values: horsepower has 6 missing values
# Summary
## A bit on engines:
* A most basic description of an engine is that it's an air pump
* Horsepower = (Torque * RPM) / 5252
* Torque peak is where an engine is operating most efficiently as far as air flow, applied science in action. (Fluid dynamics, resonance)
* Operating above or below the torque peak reduces efficiency and efficiency == fuel economy
* Torque peaks normally occur below 5252rpm, and horsepower peaks above that, so long as the engine can actually rev that high. On a dyno sheet (measuring torque and horsepower vs rpm) you'll see the torque/horsepower lines cross at 5252rpm
* As an engine spins faster, the power output increases until combustion is so inefficient and it produces so little torque that spinning faster produces no more power, if it holds together that long
Basically an engine that makes lots of power at high rpm but relatively little low end torque (mazda rotary), is going to have poor fuel economy because it spends most of its time outside of its efficiency range during normal driving. In contrast, diesel engines typically turn lower rpms and create all kinds of torque down low. So not only do they start off making more torque but they are less likely to stray very far from torque peak during normal driving. This is also why horsepower numbers on a diesel appear low, because they can't rev as high. There's more to it than this but this should be enough to provide context.
# Features
From the original features I chose:
* mpg: target
* number of cylinders
* engine displacement (in cubic inches)
* Horsepower
* Total weight of vehicle
From these I then calculated:
* Efficiency: HP per cubic inch - as this increases so does MPG
* Load: cubic inches per lb of weight - metric of how hard the engine has to work compared to its size. Engines that work hard use more fuel and a small engine working really hard can use more fuel than a big engine not doing much
* Bore_size: cubic inches per cylinder - best attempt to describe cylinder bore diameter which gives insight on torque curve
* Grunt: bore size divided by efficiency - an attempt to describe the power curve of an engine, or more specifically the presence/absence of low rpm torque output
All of these features are continuous.
# Model
Into the model:
* Horsepower
* Displacement
* Number of cylinders
* Weight
Which then gets turned into:
* Horsepower
* Bore_size
* Grunt
* Load
Then sent through:
* Quantile Transformer
* Linear Regression