This commit is contained in:
Adam 2024-01-17 14:52:52 -05:00
parent c971a855c8
commit ba17002994
135 changed files with 4261 additions and 0 deletions

7
clippy/Cargo.lock generated Normal file
View file

@ -0,0 +1,7 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
[[package]]
name = "clippy3"
version = "0.0.1"

7
clippy/Cargo.toml Normal file
View file

@ -0,0 +1,7 @@
[package]
name = "clippy3"
version = "0.0.1"
edition = "2021"
[[bin]]
name = "clippy3"
path = "clippy3.rs"

10
clippy/README.md Normal file
View file

@ -0,0 +1,10 @@
# Clippy
The Clippy tool is a collection of lints to analyze your code so you can catch common mistakes and improve your Rust code.
If you used the installation script for Rustlings, Clippy should be already installed.
If not you can install it manually via `rustup component add clippy`.
## Further information
- [GitHub Repository](https://github.com/rust-lang/rust-clippy).

24
clippy/clippy1.rs Normal file
View file

@ -0,0 +1,24 @@
// clippy1.rs
//
// The Clippy tool is a collection of lints to analyze your code so you can
// catch common mistakes and improve your Rust code.
//
// For these exercises the code will fail to compile when there are clippy
// warnings check clippy's suggestions from the output to solve the exercise.
//
// Execute `rustlings hint clippy1` or use the `hint` watch subcommand for a
// hint.
use std::f32;
fn main() {
let pi = std::f32::consts::PI;
let radius = 5.00f32;
let area = pi * f32::powi(radius, 2);
println!(
"The area of a circle with radius {:.2} is {:.5}!",
radius, area
)
}

13
clippy/clippy2.rs Normal file
View file

@ -0,0 +1,13 @@
// clippy2.rs
//
// Execute `rustlings hint clippy2` or use the `hint` watch subcommand for a
// hint.
fn main() {
let mut res = 42;
let option = Some(12);
if let Some(x) = option {
res += x;
}
println!("{}", res);
}

24
clippy/clippy3.rs Normal file
View file

@ -0,0 +1,24 @@
// clippy3.rs
//
// Here's a couple more easy Clippy fixes, so you can see its utility.
// No hints.
#[allow(unused_variables, unused_assignments)]
fn main() {
let my_option: Option<()> = None;
let my_arr = &[
-1, -2, -3,
-4, -5, -6,
];
println!("My array! Here it is: {:?}", my_arr);
//let my_empty_vec = vec![1, 2, 3, 4, 5].resize(0, 5);
//println!("This Vec is empty, see? {:?}", my_empty_vec);
let mut value_a = 45;
let mut value_b = 66;
// Let's swap these two!
std::mem::swap(&mut value_a, &mut value_b);
println!("value a: {}; value b: {}", value_a, value_b);
}

View file

@ -0,0 +1 @@
{"rustc_fingerprint":12824587143487430529,"outputs":{"18303909016113816085":{"success":true,"status":"","code":0,"stdout":"___\nlib___.rlib\nlib___.so\nlib___.so\nlib___.a\nlib___.so\n/home/adam/.rustup/toolchains/nightly-x86_64-unknown-linux-gnu\noff\npacked\nunpacked\n___\ndebug_assertions\nfeature=\"cargo-clippy\"\noverflow_checks\npanic=\"unwind\"\nproc_macro\nrelocation_model=\"pic\"\ntarget_abi=\"\"\ntarget_arch=\"x86_64\"\ntarget_endian=\"little\"\ntarget_env=\"gnu\"\ntarget_family=\"unix\"\ntarget_feature=\"fxsr\"\ntarget_feature=\"sse\"\ntarget_feature=\"sse2\"\ntarget_has_atomic\ntarget_has_atomic=\"16\"\ntarget_has_atomic=\"32\"\ntarget_has_atomic=\"64\"\ntarget_has_atomic=\"8\"\ntarget_has_atomic=\"ptr\"\ntarget_has_atomic_equal_alignment=\"16\"\ntarget_has_atomic_equal_alignment=\"32\"\ntarget_has_atomic_equal_alignment=\"64\"\ntarget_has_atomic_equal_alignment=\"8\"\ntarget_has_atomic_equal_alignment=\"ptr\"\ntarget_has_atomic_load_store\ntarget_has_atomic_load_store=\"16\"\ntarget_has_atomic_load_store=\"32\"\ntarget_has_atomic_load_store=\"64\"\ntarget_has_atomic_load_store=\"8\"\ntarget_has_atomic_load_store=\"ptr\"\ntarget_os=\"linux\"\ntarget_pointer_width=\"64\"\ntarget_thread_local\ntarget_vendor=\"unknown\"\nunix\n","stderr":""},"4614504638168534921":{"success":true,"status":"","code":0,"stdout":"rustc 1.76.0-nightly (f704f3b93 2023-12-19)\nbinary: rustc\ncommit-hash: f704f3b93b1543cf504ecca0052f9f8531b1f61f\ncommit-date: 2023-12-19\nhost: x86_64-unknown-linux-gnu\nrelease: 1.76.0-nightly\nLLVM version: 17.0.6\n","stderr":""}},"successes":{}}

View file

@ -0,0 +1,3 @@
Signature: 8a477f597d28d172789f06886806bc55
# This file is a cache directory tag created by cargo.
# For information about cache directory tags see https://bford.info/cachedir/

View file

View file

@ -0,0 +1 @@
a65d8094a4f80f39

View file

@ -0,0 +1 @@
{"rustc":4208557171189394848,"features":"[]","declared_features":"","target":14064950887575378383,"profile":5601947868832436996,"path":2386747541556052359,"deps":[],"local":[{"CheckDepInfo":{"dep_info":"debug/.fingerprint/clippy3-ffc27d43dbc4dd6f/dep-bin-clippy3"}}],"rustflags":[],"metadata":7797948686568424061,"config":2202906307356721367,"compile_kind":0}

View file

@ -0,0 +1 @@
This file has an mtime of when this was started.

View file

@ -0,0 +1,9 @@
/home/adam/projects/rust/rustlings/rustlings/exercises/clippy/target/debug/deps/libclippy3-ffc27d43dbc4dd6f.rmeta: clippy3.rs Cargo.toml
/home/adam/projects/rust/rustlings/rustlings/exercises/clippy/target/debug/deps/clippy3-ffc27d43dbc4dd6f.d: clippy3.rs Cargo.toml
clippy3.rs:
Cargo.toml:
# env-dep:CLIPPY_ARGS=-D__CLIPPY_HACKERY__warnings__CLIPPY_HACKERY__-D__CLIPPY_HACKERY__clippy::float_cmp__CLIPPY_HACKERY__
# env-dep:CLIPPY_CONF_DIR

23
conversions/README.md Normal file
View file

@ -0,0 +1,23 @@
# Type conversions
Rust offers a multitude of ways to convert a value of a given type into another type.
The simplest form of type conversion is a type cast expression. It is denoted with the binary operator `as`. For instance, `println!("{}", 1 + 1.0);` would not compile, since `1` is an integer while `1.0` is a float. However, `println!("{}", 1 as f32 + 1.0)` should compile. The exercise [`using_as`](using_as.rs) tries to cover this.
Rust also offers traits that facilitate type conversions upon implementation. These traits can be found under the [`convert`](https://doc.rust-lang.org/std/convert/index.html) module.
The traits are the following:
- `From` and `Into` covered in [`from_into`](from_into.rs)
- `TryFrom` and `TryInto` covered in [`try_from_into`](try_from_into.rs)
- `AsRef` and `AsMut` covered in [`as_ref_mut`](as_ref_mut.rs)
Furthermore, the `std::str` module offers a trait called [`FromStr`](https://doc.rust-lang.org/std/str/trait.FromStr.html) which helps with converting strings into target types via the `parse` method on strings. If properly implemented for a given type `Person`, then `let p: Person = "Mark,20".parse().unwrap()` should both compile and run without panicking.
These should be the main ways ***within the standard library*** to convert data into your desired types.
## Further information
These are not directly covered in the book, but the standard library has a great documentation for it.
- [conversions](https://doc.rust-lang.org/std/convert/index.html)
- [`FromStr` trait](https://doc.rust-lang.org/std/str/trait.FromStr.html)

63
conversions/as_ref_mut.rs Normal file
View file

@ -0,0 +1,63 @@
// as_ref_mut.rs
//
// AsRef and AsMut allow for cheap reference-to-reference conversions. Read more
// about them at https://doc.rust-lang.org/std/convert/trait.AsRef.html and
// https://doc.rust-lang.org/std/convert/trait.AsMut.html, respectively.
//
// Execute `rustlings hint as_ref_mut` or use the `hint` watch subcommand for a
// hint.
// Obtain the number of bytes (not characters) in the given argument.
// TODO: Add the AsRef trait appropriately as a trait bound.
fn byte_counter<T: AsRef<str>>(arg: T) -> usize {
arg.as_ref().as_bytes().len()
}
// Obtain the number of characters (not bytes) in the given argument.
// TODO: Add the AsRef trait appropriately as a trait bound.
fn char_counter<T: AsRef<str>>(arg: T) -> usize {
arg.as_ref().chars().count()
}
// Squares a number using as_mut().
// TODO: Add the appropriate trait bound.
fn num_sq<T: AsMut<u32>>(arg: &mut T) {
// TODO: Implement the function body.
*arg.as_mut() *= *arg.as_mut()
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn different_counts() {
let s = "Café au lait";
assert_ne!(char_counter(s), byte_counter(s));
}
#[test]
fn same_counts() {
let s = "Cafe au lait";
assert_eq!(char_counter(s), byte_counter(s));
}
#[test]
fn different_counts_using_string() {
let s = String::from("Café au lait");
assert_ne!(char_counter(s.clone()), byte_counter(s));
}
#[test]
fn same_counts_using_string() {
let s = String::from("Cafe au lait");
assert_eq!(char_counter(s.clone()), byte_counter(s));
}
#[test]
fn mut_box() {
let mut num: Box<u32> = Box::new(3);
num_sq(&mut num);
assert_eq!(*num, 9);
}
}

153
conversions/from_into.rs Normal file
View file

@ -0,0 +1,153 @@
// from_into.rs
//
// The From trait is used for value-to-value conversions. If From is implemented
// correctly for a type, the Into trait should work conversely. You can read
// more about it at https://doc.rust-lang.org/std/convert/trait.From.html
//
// Execute `rustlings hint from_into` or use the `hint` watch subcommand for a
// hint.
#[derive(Debug)]
struct Person {
name: String,
age: usize,
}
// We implement the Default trait to use it as a fallback
// when the provided string is not convertible into a Person object
impl Default for Person {
fn default() -> Person {
Person {
name: String::from("John"),
age: 30,
}
}
}
// Your task is to complete this implementation in order for the line `let p =
// Person::from("Mark,20")` to compile Please note that you'll need to parse the
// age component into a `usize` with something like `"4".parse::<usize>()`. The
// outcome of this needs to be handled appropriately.
//
// Steps:
// 1. If the length of the provided string is 0, then return the default of
// Person.
// 2. Split the given string on the commas present in it.
// 3. Extract the first element from the split operation and use it as the name.
// 4. If the name is empty, then return the default of Person.
// 5. Extract the other element from the split operation and parse it into a
// `usize` as the age.
// If while parsing the age, something goes wrong, then return the default of
// Person Otherwise, then return an instantiated Person object with the results
impl From<&str> for Person {
fn from(s: &str) -> Self {
let parts = s.split(',').collect::<Vec<&str>>();
if parts.len() < 2 {
Person::default()
} else {
match parts[..2] {
[name, age] if !name.is_empty() => age
.parse()
.map(|age| Self {
name: name.to_string(),
age,
})
.unwrap_or_default(),
_ => Self::default(),
}
}
}
}
fn main() {
// Use the `from` function
let p1 = Person::from("Mark,20");
// Since From is implemented for Person, we should be able to use Into
let p2: Person = "Gerald,70".into();
println!("{:?}", p1);
println!("{:?}", p2);
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_default() {
// Test that the default person is 30 year old John
let dp = Person::default();
assert_eq!(dp.name, "John");
assert_eq!(dp.age, 30);
}
#[test]
fn test_bad_convert() {
// Test that John is returned when bad string is provided
let p = Person::from("");
assert_eq!(p.name, "John");
assert_eq!(p.age, 30);
}
#[test]
fn test_good_convert() {
// Test that "Mark,20" works
let p = Person::from("Mark,20");
assert_eq!(p.name, "Mark");
assert_eq!(p.age, 20);
}
#[test]
fn test_bad_age() {
// Test that "Mark,twenty" will return the default person due to an
// error in parsing age
let p = Person::from("Mark,twenty");
assert_eq!(p.name, "John");
assert_eq!(p.age, 30);
}
#[test]
fn test_missing_comma_and_age() {
let p: Person = Person::from("Mark");
assert_eq!(p.name, "John");
assert_eq!(p.age, 30);
}
#[test]
fn test_missing_age() {
let p: Person = Person::from("Mark,");
assert_eq!(p.name, "John");
assert_eq!(p.age, 30);
}
#[test]
fn test_missing_name() {
let p: Person = Person::from(",1");
assert_eq!(p.name, "John");
assert_eq!(p.age, 30);
}
#[test]
fn test_missing_name_and_age() {
let p: Person = Person::from(",");
assert_eq!(p.name, "John");
assert_eq!(p.age, 30);
}
#[test]
fn test_missing_name_and_invalid_age() {
let p: Person = Person::from(",one");
assert_eq!(p.name, "John");
assert_eq!(p.age, 30);
}
#[test]
fn test_trailing_comma() {
let p: Person = Person::from("Mike,32,");
assert_eq!(p.name, "Mike");
assert_eq!(p.age, 32);
}
#[test]
fn test_trailing_comma_and_some_string() {
let p: Person = Person::from("Mike,32,man");
assert_eq!(p.name, "Mike");
assert_eq!(p.age, 32);
}
}

147
conversions/from_str.rs Normal file
View file

@ -0,0 +1,147 @@
// from_str.rs
//
// This is similar to from_into.rs, but this time we'll implement `FromStr` and
// return errors instead of falling back to a default value. Additionally, upon
// implementing FromStr, you can use the `parse` method on strings to generate
// an object of the implementor type. You can read more about it at
// https://doc.rust-lang.org/std/str/trait.FromStr.html
//
// Execute `rustlings hint from_str` or use the `hint` watch subcommand for a
// hint.
use std::num::ParseIntError;
use std::str::FromStr;
#[derive(Debug, PartialEq)]
struct Person {
name: String,
age: usize,
}
// We will use this error type for the `FromStr` implementation.
#[derive(Debug, PartialEq)]
enum ParsePersonError {
// Empty input string
Empty,
// Incorrect number of fields
BadLen,
// Empty name field
NoName,
// Wrapped error from parse::<usize>()
ParseInt(ParseIntError),
}
// Steps:
// 1. If the length of the provided string is 0, an error should be returned
// 2. Split the given string on the commas present in it
// 3. Only 2 elements should be returned from the split, otherwise return an
// error
// 4. Extract the first element from the split operation and use it as the name
// 5. Extract the other element from the split operation and parse it into a
// `usize` as the age with something like `"4".parse::<usize>()`
// 6. If while extracting the name and the age something goes wrong, an error
// should be returned
// If everything goes well, then return a Result of a Person object
//
// As an aside: `Box<dyn Error>` implements `From<&'_ str>`. This means that if
// you want to return a string error message, you can do so via just using
// return `Err("my error message".into())`.
impl FromStr for Person {
type Err = ParsePersonError;
fn from_str(s: &str) -> Result<Person, Self::Err> {
if s.len() == 0 {
Err(ParsePersonError::Empty)
} else {
let parts = s.split(',').collect::<Vec<&str>>();
if parts.len() != 2 {
Err(ParsePersonError::BadLen)
} else if parts[0].len() == 0 {
Err(ParsePersonError::NoName)
} else {
let name = parts[0].to_string();
let age = parts[1]
.parse::<usize>()
.map_err(ParsePersonError::ParseInt)?;
Ok(Person { name, age })
}
}
}
}
fn main() {
let p = "Mark,20".parse::<Person>().unwrap();
println!("{:?}", p);
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn empty_input() {
assert_eq!("".parse::<Person>(), Err(ParsePersonError::Empty));
}
#[test]
fn good_input() {
let p = "John,32".parse::<Person>();
assert!(p.is_ok());
let p = p.unwrap();
assert_eq!(p.name, "John");
assert_eq!(p.age, 32);
}
#[test]
fn missing_age() {
assert!(matches!(
"John,".parse::<Person>(),
Err(ParsePersonError::ParseInt(_))
));
}
#[test]
fn invalid_age() {
assert!(matches!(
"John,twenty".parse::<Person>(),
Err(ParsePersonError::ParseInt(_))
));
}
#[test]
fn missing_comma_and_age() {
assert_eq!("John".parse::<Person>(), Err(ParsePersonError::BadLen));
}
#[test]
fn missing_name() {
assert_eq!(",1".parse::<Person>(), Err(ParsePersonError::NoName));
}
#[test]
fn missing_name_and_age() {
assert!(matches!(
",".parse::<Person>(),
Err(ParsePersonError::NoName | ParsePersonError::ParseInt(_))
));
}
#[test]
fn missing_name_and_invalid_age() {
assert!(matches!(
",one".parse::<Person>(),
Err(ParsePersonError::NoName | ParsePersonError::ParseInt(_))
));
}
#[test]
fn trailing_comma() {
assert_eq!("John,32,".parse::<Person>(), Err(ParsePersonError::BadLen));
}
#[test]
fn trailing_comma_and_some_string() {
assert_eq!(
"John,32,man".parse::<Person>(),
Err(ParsePersonError::BadLen)
);
}
}

View file

@ -0,0 +1,226 @@
// try_from_into.rs
//
// TryFrom is a simple and safe type conversion that may fail in a controlled
// way under some circumstances. Basically, this is the same as From. The main
// difference is that this should return a Result type instead of the target
// type itself. You can read more about it at
// https://doc.rust-lang.org/std/convert/trait.TryFrom.html
//
// Execute `rustlings hint try_from_into` or use the `hint` watch subcommand for
// a hint.
use std::convert::{TryFrom, TryInto};
#[derive(Debug, PartialEq)]
struct Color {
red: u8,
green: u8,
blue: u8,
}
// We will use this error type for these `TryFrom` conversions.
#[derive(Debug, PartialEq)]
enum IntoColorError {
// Incorrect length of slice
BadLen,
// Integer conversion error
IntConversion,
}
// Your task is to complete this implementation and return an Ok result of inner
// type Color. You need to create an implementation for a tuple of three
// integers, an array of three integers, and a slice of integers.
//
// Note that the implementation for tuple and array will be checked at compile
// time, but the slice implementation needs to check the slice length! Also note
// that correct RGB color values must be integers in the 0..=255 range.
// Tuple implementation
impl TryFrom<(i16, i16, i16)> for Color {
type Error = IntoColorError;
fn try_from(tuple: (i16, i16, i16)) -> Result<Self, Self::Error> {
let (red, green, blue) = tuple;
for color in [red, green, blue] {
if !(0..=255).contains(&color) {
return Err(IntoColorError::IntConversion);
}
}
Ok(Self {
red: tuple.0 as u8,
green: tuple.1 as u8,
blue: tuple.2 as u8,
})
}
}
// Array implementation
impl TryFrom<[i16; 3]> for Color {
type Error = IntoColorError;
fn try_from(arr: [i16; 3]) -> Result<Self, Self::Error> {
for color in arr {
if !(0..=255).contains(&color) {
return Err(IntoColorError::IntConversion);
}
}
Ok(Self {
red: arr[0] as u8,
green: arr[1] as u8,
blue: arr[2] as u8,
})
}
}
// Slice implementation
impl TryFrom<&[i16]> for Color {
type Error = IntoColorError;
fn try_from(slice: &[i16]) -> Result<Self, Self::Error> {
if slice.len() != 3 {
return Err(IntoColorError::BadLen);
}
for color in slice {
if !(0..=255).contains(color) {
return Err(IntoColorError::IntConversion);
}
}
Ok(Self {
red: slice[0] as u8,
green: slice[1] as u8,
blue: slice[2] as u8,
})
}
}
fn main() {
// Use the `try_from` function
let c1 = Color::try_from((183, 65, 14));
println!("{:?}", c1);
// Since TryFrom is implemented for Color, we should be able to use TryInto
let c2: Result<Color, _> = [183, 65, 14].try_into();
println!("{:?}", c2);
let v = vec![183, 65, 14];
// With slice we should use `try_from` function
let c3 = Color::try_from(&v[..]);
println!("{:?}", c3);
// or take slice within round brackets and use TryInto
let c4: Result<Color, _> = (&v[..]).try_into();
println!("{:?}", c4);
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_tuple_out_of_range_positive() {
assert_eq!(
Color::try_from((256, 1000, 10000)),
Err(IntoColorError::IntConversion)
);
}
#[test]
fn test_tuple_out_of_range_negative() {
assert_eq!(
Color::try_from((-1, -10, -256)),
Err(IntoColorError::IntConversion)
);
}
#[test]
fn test_tuple_sum() {
assert_eq!(
Color::try_from((-1, 255, 255)),
Err(IntoColorError::IntConversion)
);
}
#[test]
fn test_tuple_correct() {
let c: Result<Color, _> = (183, 65, 14).try_into();
assert!(c.is_ok());
assert_eq!(
c.unwrap(),
Color {
red: 183,
green: 65,
blue: 14
}
);
}
#[test]
fn test_array_out_of_range_positive() {
let c: Result<Color, _> = [1000, 10000, 256].try_into();
assert_eq!(c, Err(IntoColorError::IntConversion));
}
#[test]
fn test_array_out_of_range_negative() {
let c: Result<Color, _> = [-10, -256, -1].try_into();
assert_eq!(c, Err(IntoColorError::IntConversion));
}
#[test]
fn test_array_sum() {
let c: Result<Color, _> = [-1, 255, 255].try_into();
assert_eq!(c, Err(IntoColorError::IntConversion));
}
#[test]
fn test_array_correct() {
let c: Result<Color, _> = [183, 65, 14].try_into();
assert!(c.is_ok());
assert_eq!(
c.unwrap(),
Color {
red: 183,
green: 65,
blue: 14
}
);
}
#[test]
fn test_slice_out_of_range_positive() {
let arr = [10000, 256, 1000];
assert_eq!(
Color::try_from(&arr[..]),
Err(IntoColorError::IntConversion)
);
}
#[test]
fn test_slice_out_of_range_negative() {
let arr = [-256, -1, -10];
assert_eq!(
Color::try_from(&arr[..]),
Err(IntoColorError::IntConversion)
);
}
#[test]
fn test_slice_sum() {
let arr = [-1, 255, 255];
assert_eq!(
Color::try_from(&arr[..]),
Err(IntoColorError::IntConversion)
);
}
#[test]
fn test_slice_correct() {
let v = vec![183, 65, 14];
let c: Result<Color, _> = Color::try_from(&v[..]);
assert!(c.is_ok());
assert_eq!(
c.unwrap(),
Color {
red: 183,
green: 65,
blue: 14
}
);
}
#[test]
fn test_slice_excess_length() {
let v = vec![0, 0, 0, 0];
assert_eq!(Color::try_from(&v[..]), Err(IntoColorError::BadLen));
}
#[test]
fn test_slice_insufficient_length() {
let v = vec![0, 0];
assert_eq!(Color::try_from(&v[..]), Err(IntoColorError::BadLen));
}
}

31
conversions/using_as.rs Normal file
View file

@ -0,0 +1,31 @@
// using_as.rs
//
// Type casting in Rust is done via the usage of the `as` operator. Please note
// that the `as` operator is not only used when type casting. It also helps with
// renaming imports.
//
// The goal is to make sure that the division does not fail to compile and
// returns the proper type.
//
// Execute `rustlings hint using_as` or use the `hint` watch subcommand for a
// hint.
fn average(values: &[f64]) -> f64 {
let total = values.iter().sum::<f64>();
total / values.len() as f64
}
fn main() {
let values = [3.5, 0.3, 13.0, 11.7];
println!("{}", average(&values));
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn returns_proper_type_and_value() {
assert_eq!(average(&[3.5, 0.3, 13.0, 11.7]), 7.125);
}
}

10
enums/README.md Normal file
View file

@ -0,0 +1,10 @@
# Enums
Rust allows you to define types called "enums" which enumerate possible values.
Enums are a feature in many languages, but their capabilities differ in each language. Rusts enums are most similar to algebraic data types in functional languages, such as F#, OCaml, and Haskell.
Useful in combination with enums is Rust's "pattern matching" facility, which makes it easy to run different code for different values of an enumeration.
## Further information
- [Enums](https://doc.rust-lang.org/book/ch06-00-enums.html)
- [Pattern syntax](https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html)

18
enums/enums1.rs Normal file
View file

@ -0,0 +1,18 @@
// enums1.rs
//
// No hints this time! ;)
#[derive(Debug)]
enum Message {
Quit,
Echo,
Move,
ChangeColor
}
fn main() {
println!("{:?}", Message::Quit);
println!("{:?}", Message::Echo);
println!("{:?}", Message::Move);
println!("{:?}", Message::ChangeColor);
}

31
enums/enums2.rs Normal file
View file

@ -0,0 +1,31 @@
// enums2.rs
//
// Execute `rustlings hint enums2` or use the `hint` watch subcommand for a
// hint.
#[derive(Debug)]
enum Message {
Move{x: u8, y: u8},
Echo(String),
ChangeColor(u8, u8, u8),
Quit,
}
impl Message {
fn call(&self) {
println!("{:?}", self);
}
}
fn main() {
let messages = [
Message::Move { x: 10, y: 30 },
Message::Echo(String::from("hello world")),
Message::ChangeColor(200, 255, 255),
Message::Quit,
];
for message in &messages {
message.call();
}
}

81
enums/enums3.rs Normal file
View file

@ -0,0 +1,81 @@
// enums3.rs
//
// Address all the TODOs to make the tests pass!
//
// Execute `rustlings hint enums3` or use the `hint` watch subcommand for a
// hint.
enum Message {
ChangeColor(u8, u8, u8),
Echo(String),
Move(Point),
Quit,
}
struct Point {
x: u8,
y: u8,
}
struct State {
color: (u8, u8, u8),
position: Point,
quit: bool,
message: String,
}
impl State {
fn change_color(&mut self, color: (u8, u8, u8)) {
self.color = color;
}
fn quit(&mut self) {
self.quit = true;
}
fn echo(&mut self, s: String) {
self.message = s
}
fn move_position(&mut self, p: Point) {
self.position = p;
}
fn process(&mut self, message: Message) {
// TODO: create a match expression to process the different message
// variants
// Remember: When passing a tuple as a function argument, you'll need
// extra parentheses: fn function((t, u, p, l, e))
match message {
Message::ChangeColor(r, g, b) => self.change_color((r, g, b)),
Message::Echo(echo) => self.echo(echo),
Message::Move(point) => self.move_position(point),
Message::Quit => self.quit()
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_match_message_call() {
let mut state = State {
quit: false,
position: Point { x: 0, y: 0 },
color: (0, 0, 0),
message: "hello world".to_string(),
};
state.process(Message::ChangeColor(255, 0, 255));
state.process(Message::Echo(String::from("Hello world!")));
state.process(Message::Move(Point { x: 10, y: 15 }));
state.process(Message::Quit);
assert_eq!(state.color, (255, 0, 255));
assert_eq!(state.position.x, 10);
assert_eq!(state.position.y, 15);
assert_eq!(state.quit, true);
assert_eq!(state.message, "Hello world!");
}
}

12
error_handling/README.md Normal file
View file

@ -0,0 +1,12 @@
# Error handling
Most errors arent serious enough to require the program to stop entirely.
Sometimes, when a function fails, its for a reason that you can easily interpret and respond to.
For example, if you try to open a file and that operation fails because the file doesnt exist, you might want to create the file instead of terminating the process.
## Further information
- [Error Handling](https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html)
- [Generics](https://doc.rust-lang.org/book/ch10-01-syntax.html)
- [Result](https://doc.rust-lang.org/rust-by-example/error/result.html)
- [Boxing errors](https://doc.rust-lang.org/rust-by-example/error/multiple_error_types/boxing_errors.html)

40
error_handling/errors1.rs Normal file
View file

@ -0,0 +1,40 @@
// errors1.rs
//
// This function refuses to generate text to be printed on a nametag if you pass
// it an empty string. It'd be nicer if it explained what the problem was,
// instead of just sometimes returning `None`. Thankfully, Rust has a similar
// construct to `Option` that can be used to express error conditions. Let's use
// it!
//
// Execute `rustlings hint errors1` or use the `hint` watch subcommand for a
// hint.
pub fn generate_nametag_text(name: String) -> Result<String, String> {
if name.is_empty() {
Err("`name` was empty; it must be nonempty.".to_string())
} else {
Ok(format!("Hi! My name is {}", name))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn generates_nametag_text_for_a_nonempty_name() {
assert_eq!(
generate_nametag_text("Beyoncé".into()),
Ok("Hi! My name is Beyoncé".into())
);
}
#[test]
fn explains_why_generating_nametag_text_fails() {
assert_eq!(
generate_nametag_text("".into()),
// Don't change this line
Err("`name` was empty; it must be nonempty.".into())
);
}
}

48
error_handling/errors2.rs Normal file
View file

@ -0,0 +1,48 @@
// errors2.rs
//
// Say we're writing a game where you can buy items with tokens. All items cost
// 5 tokens, and whenever you purchase items there is a processing fee of 1
// token. A player of the game will type in how many items they want to buy, and
// the `total_cost` function will calculate the total cost of the tokens. Since
// the player typed in the quantity, though, we get it as a string-- and they
// might have typed anything, not just numbers!
//
// Right now, this function isn't handling the error case at all (and isn't
// handling the success case properly either). What we want to do is: if we call
// the `total_cost` function on a string that is not a number, that function
// will return a `ParseIntError`, and in that case, we want to immediately
// return that error from our function and not try to multiply and add.
//
// There are at least two ways to implement this that are both correct-- but one
// is a lot shorter!
//
// Execute `rustlings hint errors2` or use the `hint` watch subcommand for a
// hint.
use std::num::ParseIntError;
pub fn total_cost(item_quantity: &str) -> Result<i32, ParseIntError> {
let processing_fee = 1;
let cost_per_item = 5;
let qty = item_quantity.parse::<i32>()?;
Ok(qty * cost_per_item + processing_fee)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn item_quantity_is_a_valid_number() {
assert_eq!(total_cost("34"), Ok(171));
}
#[test]
fn item_quantity_is_an_invalid_number() {
assert_eq!(
total_cost("beep boop").unwrap_err().to_string(),
"invalid digit found in string"
);
}
}

33
error_handling/errors3.rs Normal file
View file

@ -0,0 +1,33 @@
// errors3.rs
//
// This is a program that is trying to use a completed version of the
// `total_cost` function from the previous exercise. It's not working though!
// Why not? What should we do to fix it?
//
// Execute `rustlings hint errors3` or use the `hint` watch subcommand for a
// hint.
use std::num::ParseIntError;
fn main() -> Result<(), ParseIntError> {
let mut tokens = 100;
let pretend_user_input = "8";
let cost = total_cost(pretend_user_input)?;
if cost > tokens {
println!("You can't afford that many!");
} else {
tokens -= cost;
println!("You now have {} tokens.", tokens);
}
Ok(())
}
pub fn total_cost(item_quantity: &str) -> Result<i32, ParseIntError> {
let processing_fee = 1;
let cost_per_item = 5;
let qty = item_quantity.parse::<i32>()?;
Ok(qty * cost_per_item + processing_fee)
}

35
error_handling/errors4.rs Normal file
View file

@ -0,0 +1,35 @@
// errors4.rs
//
// Execute `rustlings hint errors4` or use the `hint` watch subcommand for a
// hint.
use std::cmp::Ordering;
#[derive(PartialEq, Debug)]
struct PositiveNonzeroInteger(u64);
#[derive(PartialEq, Debug)]
enum CreationError {
Negative,
Zero,
}
impl PositiveNonzeroInteger {
fn new(value: i64) -> Result<PositiveNonzeroInteger, CreationError> {
match value.cmp(&0) {
Ordering::Greater => Ok(PositiveNonzeroInteger(value as u64)),
Ordering::Equal => Err(CreationError::Zero),
Ordering::Less => Err(CreationError::Negative),
}
}
}
#[test]
fn test_creation() {
assert!(PositiveNonzeroInteger::new(10).is_ok());
assert_eq!(
Err(CreationError::Negative),
PositiveNonzeroInteger::new(-10)
);
assert_eq!(Err(CreationError::Zero), PositiveNonzeroInteger::new(0));
}

69
error_handling/errors5.rs Normal file
View file

@ -0,0 +1,69 @@
// errors5.rs
//
// This program uses an altered version of the code from errors4.
//
// This exercise uses some concepts that we won't get to until later in the
// course, like `Box` and the `From` trait. It's not important to understand
// them in detail right now, but you can read ahead if you like. For now, think
// of the `Box<dyn ???>` type as an "I want anything that does ???" type, which,
// given Rust's usual standards for runtime safety, should strike you as
// somewhat lenient!
//
// In short, this particular use case for boxes is for when you want to own a
// value and you care only that it is a type which implements a particular
// trait. To do so, The Box is declared as of type Box<dyn Trait> where Trait is
// the trait the compiler looks for on any value used in that context. For this
// exercise, that context is the potential errors which can be returned in a
// Result.
//
// What can we use to describe both errors? In other words, is there a trait
// which both errors implement?
//
// Execute `rustlings hint errors5` or use the `hint` watch subcommand for a
// hint.
use std::error;
use std::fmt;
use std::num::ParseIntError;
// TODO: update the return type of `main()` to make this compile.
fn main() -> Result<(), Box<dyn error::Error>> {
let pretend_user_input = "42";
let x: i64 = pretend_user_input.parse()?;
println!("output={:?}", PositiveNonzeroInteger::new(x)?);
Ok(())
}
// Don't change anything below this line.
#[derive(PartialEq, Debug)]
struct PositiveNonzeroInteger(u64);
#[derive(PartialEq, Debug)]
enum CreationError {
Negative,
Zero,
}
impl PositiveNonzeroInteger {
fn new(value: i64) -> Result<PositiveNonzeroInteger, CreationError> {
match value {
x if x < 0 => Err(CreationError::Negative),
x if x == 0 => Err(CreationError::Zero),
x => Ok(PositiveNonzeroInteger(x as u64)),
}
}
}
// This is required so that `CreationError` can implement `error::Error`.
impl fmt::Display for CreationError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let description = match *self {
CreationError::Negative => "number is negative",
CreationError::Zero => "number is zero",
};
f.write_str(description)
}
}
impl error::Error for CreationError {}

93
error_handling/errors6.rs Normal file
View file

@ -0,0 +1,93 @@
// errors6.rs
//
// Using catch-all error types like `Box<dyn error::Error>` isn't recommended
// for library code, where callers might want to make decisions based on the
// error content, instead of printing it out or propagating it further. Here, we
// define a custom error type to make it possible for callers to decide what to
// do next when our function returns an error.
//
// Execute `rustlings hint errors6` or use the `hint` watch subcommand for a
// hint.
use std::num::ParseIntError;
// This is a custom error type that we will be using in `parse_pos_nonzero()`.
#[derive(PartialEq, Debug)]
enum ParsePosNonzeroError {
Creation(CreationError),
ParseInt(ParseIntError),
}
impl ParsePosNonzeroError {
fn from_creation(err: CreationError) -> ParsePosNonzeroError {
ParsePosNonzeroError::Creation(err)
}
fn from_parse_int(err: ParseIntError) -> ParsePosNonzeroError {
ParsePosNonzeroError::ParseInt(err)
}
}
fn parse_pos_nonzero(s: &str) -> Result<PositiveNonzeroInteger, ParsePosNonzeroError> {
// TODO: change this to return an appropriate error instead of panicking
// when `parse()` returns an error.
let x: i64 = s.parse().map_err(ParsePosNonzeroError::from_parse_int)?;
PositiveNonzeroInteger::new(x).map_err(ParsePosNonzeroError::from_creation)
}
// Don't change anything below this line.
#[derive(PartialEq, Debug)]
struct PositiveNonzeroInteger(u64);
#[derive(PartialEq, Debug)]
enum CreationError {
Negative,
Zero,
}
impl PositiveNonzeroInteger {
fn new(value: i64) -> Result<PositiveNonzeroInteger, CreationError> {
match value {
x if x < 0 => Err(CreationError::Negative),
x if x == 0 => Err(CreationError::Zero),
x => Ok(PositiveNonzeroInteger(x as u64)),
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_parse_error() {
// We can't construct a ParseIntError, so we have to pattern match.
assert!(matches!(
parse_pos_nonzero("not a number"),
Err(ParsePosNonzeroError::ParseInt(_))
));
}
#[test]
fn test_negative() {
assert_eq!(
parse_pos_nonzero("-555"),
Err(ParsePosNonzeroError::Creation(CreationError::Negative))
);
}
#[test]
fn test_zero() {
assert_eq!(
parse_pos_nonzero("0"),
Err(ParsePosNonzeroError::Creation(CreationError::Zero))
);
}
#[test]
fn test_positive() {
let x = PositiveNonzeroInteger::new(42);
assert!(x.is_ok());
assert_eq!(parse_pos_nonzero("42"), Ok(x.unwrap()));
}
}

8
functions/README.md Normal file
View file

@ -0,0 +1,8 @@
# Functions
Here, you'll learn how to write functions and how the Rust compiler can help you debug errors even
in more complex code.
## Further information
- [How Functions Work](https://doc.rust-lang.org/book/ch03-03-how-functions-work.html)

10
functions/functions1.rs Normal file
View file

@ -0,0 +1,10 @@
// functions1.rs
//
// Execute `rustlings hint functions1` or use the `hint` watch subcommand for a
// hint.
fn call_me() {
}
fn main() {
call_me();
}

14
functions/functions2.rs Normal file
View file

@ -0,0 +1,14 @@
// functions2.rs
//
// Execute `rustlings hint functions2` or use the `hint` watch subcommand for a
// hint.
fn main() {
call_me(3);
}
fn call_me(num: u8) {
for i in 0..num {
println!("Ring! Call number {}", i + 1);
}
}

14
functions/functions3.rs Normal file
View file

@ -0,0 +1,14 @@
// functions3.rs
//
// Execute `rustlings hint functions3` or use the `hint` watch subcommand for a
// hint.
fn main() {
call_me(3);
}
fn call_me(num: u32) {
for i in 0..num {
println!("Ring! Call number {}", i + 1);
}
}

26
functions/functions4.rs Normal file
View file

@ -0,0 +1,26 @@
// functions4.rs
//
// This store is having a sale where if the price is an even number, you get 10
// Rustbucks off, but if it's an odd number, it's 3 Rustbucks off. (Don't worry
// about the function bodies themselves, we're only interested in the signatures
// for now. If anything, this is a good way to peek ahead to future exercises!)
//
// Execute `rustlings hint functions4` or use the `hint` watch subcommand for a
// hint.
fn main() {
let original_price = 51;
println!("Your sale price is {}", sale_price(original_price));
}
fn sale_price(price: i32) -> i32 {
if is_even(price) {
price - 10
} else {
price - 3
}
}
fn is_even(num: i32) -> bool {
num % 2 == 0
}

13
functions/functions5.rs Normal file
View file

@ -0,0 +1,13 @@
// functions5.rs
//
// Execute `rustlings hint functions5` or use the `hint` watch subcommand for a
// hint.
fn main() {
let answer = square(3);
println!("The square of 3 is {}", answer);
}
fn square(num: i32) -> i32 {
num * num
}

11
generics/README.md Normal file
View file

@ -0,0 +1,11 @@
# Generics
Generics is the topic of generalizing types and functionalities to broader cases.
This is extremely useful for reducing code duplication in many ways, but can call for rather involving syntax.
Namely, being generic requires taking great care to specify over which types a generic type is actually considered valid.
The simplest and most common use of generics is for type parameters.
## Further information
- [Generic Data Types](https://doc.rust-lang.org/stable/book/ch10-01-syntax.html)
- [Bounds](https://doc.rust-lang.org/rust-by-example/generics/bounds.html)

12
generics/generics1.rs Normal file
View file

@ -0,0 +1,12 @@
// generics1.rs
//
// This shopping list program isn't compiling! Use your knowledge of generics to
// fix it.
//
// Execute `rustlings hint generics1` or use the `hint` watch subcommand for a
// hint.
fn main() {
let mut shopping_list: Vec<&str> = Vec::new();
shopping_list.push("milk");
}

32
generics/generics2.rs Normal file
View file

@ -0,0 +1,32 @@
// generics2.rs
//
// This powerful wrapper provides the ability to store a positive integer value.
// Rewrite it using generics so that it supports wrapping ANY type.
//
// Execute `rustlings hint generics2` or use the `hint` watch subcommand for a
// hint.
struct Wrapper<T> {
value: T,
}
impl<T> Wrapper<T> {
pub fn new(value: T) -> Self {
Wrapper { value }
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn store_u32_in_wrapper() {
assert_eq!(Wrapper::new(42).value, 42);
}
#[test]
fn store_str_in_wrapper() {
assert_eq!(Wrapper::new("Foo").value, "Foo");
}
}

12
hashmaps/README.md Normal file
View file

@ -0,0 +1,12 @@
# Hashmaps
A *hash map* allows you to associate a value with a particular key.
You may also know this by the names [*unordered map* in C++](https://en.cppreference.com/w/cpp/container/unordered_map),
[*dictionary* in Python](https://docs.python.org/3/tutorial/datastructures.html#dictionaries) or an *associative array* in other languages.
This is the other data structure that we've been talking about before, when
talking about Vecs.
## Further information
- [Storing Keys with Associated Values in Hash Maps](https://doc.rust-lang.org/book/ch08-03-hash-maps.html)

44
hashmaps/hashmaps1.rs Normal file
View file

@ -0,0 +1,44 @@
// hashmaps1.rs
//
// A basket of fruits in the form of a hash map needs to be defined. The key
// represents the name of the fruit and the value represents how many of that
// particular fruit is in the basket. You have to put at least three different
// types of fruits (e.g apple, banana, mango) in the basket and the total count
// of all the fruits should be at least five.
//
// Make me compile and pass the tests!
//
// Execute `rustlings hint hashmaps1` or use the `hint` watch subcommand for a
// hint.
use std::collections::HashMap;
fn fruit_basket() -> HashMap<String, u32> {
let mut basket = HashMap::new();
// Two bananas are already given for you :)
basket.insert(String::from("banana"), 2);
// TODO: Put more fruits in your basket here.
basket.insert(String::from("apple"), 2);
basket.insert(String::from("orange"), 2);
basket
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn at_least_three_types_of_fruits() {
let basket = fruit_basket();
assert!(basket.len() >= 3);
}
#[test]
fn at_least_five_fruits() {
let basket = fruit_basket();
assert!(basket.values().sum::<u32>() >= 5);
}
}

94
hashmaps/hashmaps2.rs Normal file
View file

@ -0,0 +1,94 @@
// hashmaps2.rs
//
// We're collecting different fruits to bake a delicious fruit cake. For this,
// we have a basket, which we'll represent in the form of a hash map. The key
// represents the name of each fruit we collect and the value represents how
// many of that particular fruit we have collected. Three types of fruits -
// Apple (4), Mango (2) and Lychee (5) are already in the basket hash map. You
// must add fruit to the basket so that there is at least one of each kind and
// more than 11 in total - we have a lot of mouths to feed. You are not allowed
// to insert any more of these fruits!
//
// Make me pass the tests!
//
// Execute `rustlings hint hashmaps2` or use the `hint` watch subcommand for a
// hint.
use std::collections::HashMap;
#[derive(Hash, PartialEq, Eq)]
enum Fruit {
Apple,
Banana,
Mango,
Lychee,
Pineapple,
}
fn fruit_basket(basket: &mut HashMap<Fruit, u32>) {
let fruit_kinds = vec![
Fruit::Apple,
Fruit::Banana,
Fruit::Mango,
Fruit::Lychee,
Fruit::Pineapple,
];
for fruit in fruit_kinds {
// TODO: Insert new fruits if they are not already present in the
// basket. Note that you are not allowed to put any type of fruit that's
// already present!
if !basket.contains_key(&fruit) {
basket.insert(fruit, 5);
}
}
}
#[cfg(test)]
mod tests {
use super::*;
// Don't modify this function!
fn get_fruit_basket() -> HashMap<Fruit, u32> {
let mut basket = HashMap::<Fruit, u32>::new();
basket.insert(Fruit::Apple, 4);
basket.insert(Fruit::Mango, 2);
basket.insert(Fruit::Lychee, 5);
basket
}
#[test]
fn test_given_fruits_are_not_modified() {
let mut basket = get_fruit_basket();
fruit_basket(&mut basket);
assert_eq!(*basket.get(&Fruit::Apple).unwrap(), 4);
assert_eq!(*basket.get(&Fruit::Mango).unwrap(), 2);
assert_eq!(*basket.get(&Fruit::Lychee).unwrap(), 5);
}
#[test]
fn at_least_five_types_of_fruits() {
let mut basket = get_fruit_basket();
fruit_basket(&mut basket);
let count_fruit_kinds = basket.len();
assert!(count_fruit_kinds >= 5);
}
#[test]
fn greater_than_eleven_fruits() {
let mut basket = get_fruit_basket();
fruit_basket(&mut basket);
let count = basket.values().sum::<u32>();
assert!(count > 11);
}
#[test]
fn all_fruit_types_in_basket() {
let mut basket = get_fruit_basket();
fruit_basket(&mut basket);
for amount in basket.values() {
assert_ne!(amount, &0);
}
}
}

106
hashmaps/hashmaps3.rs Normal file
View file

@ -0,0 +1,106 @@
// hashmaps3.rs
//
// A list of scores (one per line) of a soccer match is given. Each line is of
// the form : "<team_1_name>,<team_2_name>,<team_1_goals>,<team_2_goals>"
// Example: England,France,4,2 (England scored 4 goals, France 2).
//
// You have to build a scores table containing the name of the team, goals the
// team scored, and goals the team conceded. One approach to build the scores
// table is to use a Hashmap. The solution is partially written to use a
// Hashmap, complete it to pass the test.
//
// Make me pass the tests!
//
// Execute `rustlings hint hashmaps3` or use the `hint` watch subcommand for a
// hint.
use std::collections::HashMap;
// A structure to store the goal details of a team.
struct Team {
goals_scored: u8,
goals_conceded: u8,
}
fn build_scores_table(results: String) -> HashMap<String, Team> {
// The name of the team is the key and its associated struct is the value.
let mut scores: HashMap<String, Team> = HashMap::new();
for r in results.lines() {
let v: Vec<&str> = r.split(',').collect();
let team_1_name = v[0].to_string();
let team_1_score: u8 = v[2].parse().unwrap();
let team_2_name = v[1].to_string();
let team_2_score: u8 = v[3].parse().unwrap();
// TODO: Populate the scores table with details extracted from the
// current line. Keep in mind that goals scored by team_1
// will be the number of goals conceded from team_2, and similarly
// goals scored by team_2 will be the number of goals conceded by
// team_1.
scores
.entry(team_1_name)
.and_modify(|team| {
team.goals_scored += team_1_score;
team.goals_conceded += team_2_score
})
.or_insert(Team {
goals_scored: team_1_score,
goals_conceded: team_2_score,
});
scores
.entry(team_2_name)
.and_modify(|team| {
team.goals_scored += team_2_score;
team.goals_conceded += team_1_score
})
.or_insert(Team {
goals_scored: team_2_score,
goals_conceded: team_1_score,
});
}
scores
}
#[cfg(test)]
mod tests {
use super::*;
fn get_results() -> String {
let results = "".to_string()
+ "England,France,4,2\n"
+ "France,Italy,3,1\n"
+ "Poland,Spain,2,0\n"
+ "Germany,England,2,1\n";
results
}
#[test]
fn build_scores() {
let scores = build_scores_table(get_results());
let mut keys: Vec<&String> = scores.keys().collect();
keys.sort();
assert_eq!(
keys,
vec!["England", "France", "Germany", "Italy", "Poland", "Spain"]
);
}
#[test]
fn validate_team_score_1() {
let scores = build_scores_table(get_results());
let team = scores.get("England").unwrap();
assert_eq!(team.goals_scored, 5);
assert_eq!(team.goals_conceded, 4);
}
#[test]
fn validate_team_score_2() {
let scores = build_scores_table(get_results());
let team = scores.get("Spain").unwrap();
assert_eq!(team.goals_scored, 0);
assert_eq!(team.goals_conceded, 2);
}
}

7
if/README.md Normal file
View file

@ -0,0 +1,7 @@
# If
`if`, the most basic (but still surprisingly versatile!) type of control flow, is what you'll learn here.
## Further information
- [Control Flow - if expressions](https://doc.rust-lang.org/book/ch03-05-control-flow.html#if-expressions)

32
if/if1.rs Normal file
View file

@ -0,0 +1,32 @@
// if1.rs
//
// Execute `rustlings hint if1` or use the `hint` watch subcommand for a hint.
pub fn bigger(a: i32, b: i32) -> i32 {
if a > b {
a
} else {
b
}
}
// Don't mind this for now :)
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn ten_is_bigger_than_eight() {
assert_eq!(10, bigger(10, 8));
}
#[test]
fn fortytwo_is_bigger_than_thirtytwo() {
assert_eq!(42, bigger(32, 42));
}
#[test]
fn equal_numbers() {
assert_eq!(42, bigger(42, 42));
}
}

37
if/if2.rs Normal file
View file

@ -0,0 +1,37 @@
// if2.rs
//
// Step 1: Make me compile!
// Step 2: Get the bar_for_fuzz and default_to_baz tests passing!
//
// Execute `rustlings hint if2` or use the `hint` watch subcommand for a hint.
pub fn foo_if_fizz(fizzish: &str) -> &str {
if fizzish == "fizz" {
"foo"
} else if fizzish == "fuzz" {
"bar"
} else {
"baz"
}
}
// No test changes needed!
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn foo_for_fizz() {
assert_eq!(foo_if_fizz("fizz"), "foo")
}
#[test]
fn bar_for_fuzz() {
assert_eq!(foo_if_fizz("fuzz"), "bar")
}
#[test]
fn default_to_baz() {
assert_eq!(foo_if_fizz("literally anything"), "baz")
}
}

54
if/if3.rs Normal file
View file

@ -0,0 +1,54 @@
// if3.rs
//
// Execute `rustlings hint if3` or use the `hint` watch subcommand for a hint.
pub fn animal_habitat(animal: &str) -> &'static str {
let identifier = if animal == "crab" {
1
} else if animal == "gopher" {
2
} else if animal == "snake" {
3
} else {
0
};
// DO NOT CHANGE THIS STATEMENT BELOW
let habitat = if identifier == 1 {
"Beach"
} else if identifier == 2 {
"Burrow"
} else if identifier == 3 {
"Desert"
} else {
"Unknown"
};
habitat
}
// No test changes needed.
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn gopher_lives_in_burrow() {
assert_eq!(animal_habitat("gopher"), "Burrow")
}
#[test]
fn snake_lives_in_desert() {
assert_eq!(animal_habitat("snake"), "Desert")
}
#[test]
fn crab_lives_on_beach() {
assert_eq!(animal_habitat("crab"), "Beach")
}
#[test]
fn unknown_animal() {
assert_eq!(animal_habitat("dinosaur"), "Unknown")
}
}

8
intro/README.md Normal file
View file

@ -0,0 +1,8 @@
# Intro
Rust uses the `print!` and `println!` macros to print text to the console.
## Further information
- [Hello World](https://doc.rust-lang.org/rust-by-example/hello.html)
- [Formatted print](https://doc.rust-lang.org/rust-by-example/hello/print.html)

40
intro/intro1.rs Normal file
View file

@ -0,0 +1,40 @@
// intro1.rs
//
// About this `I AM NOT DONE` thing:
// We sometimes encourage you to keep trying things on a given exercise, even
// after you already figured it out. If you got everything working and feel
// ready for the next exercise, remove the `I AM NOT DONE` comment below.
//
// If you're running this using `rustlings watch`: The exercise file will be
// reloaded when you change one of the lines below! Try adding a `println!`
// line, or try changing what it outputs in your terminal. Try removing a
// semicolon and see what happens!
//
// Execute `rustlings hint intro1` or use the `hint` watch subcommand for a
// hint.
fn main() {
println!("Hello and");
println!(r#" welcome to... "#);
println!(r#" _ _ _ "#);
println!(r#" _ __ _ _ ___| |_| (_)_ __ __ _ ___ "#);
println!(r#" | '__| | | / __| __| | | '_ \ / _` / __| "#);
println!(r#" | | | |_| \__ \ |_| | | | | | (_| \__ \ "#);
println!(r#" |_| \__,_|___/\__|_|_|_| |_|\__, |___/ "#);
println!(r#" |___/ "#);
println!();
println!("This exercise compiles successfully. The remaining exercises contain a compiler");
println!("or logic error. The central concept behind Rustlings is to fix these errors and");
println!("solve the exercises. Good luck!");
println!();
println!("The source for this exercise is in `exercises/intro/intro1.rs`. Have a look!");
println!(
"Going forward, the source of the exercises will always be in the success/failure output."
);
println!();
println!(
"If you want to use rust-analyzer, Rust's LSP implementation, make sure your editor is set"
);
println!("up, and then run `rustlings lsp` before continuing.")
}

12
intro/intro2.rs Normal file
View file

@ -0,0 +1,12 @@
// intro2.rs
//
// Make the code print a greeting to the world.
//
// Execute `rustlings hint intro2` or use the `hint` watch subcommand for a
// hint.
fn main() {
let world = "World";
println!("Hello {}!", world);
}

8
iterators/README.md Normal file
View file

@ -0,0 +1,8 @@
# Iterators
This section will teach you about Iterators.
## Further information
- [Iterator](https://doc.rust-lang.org/book/ch13-02-iterators.html)
- [Iterator documentation](https://doc.rust-lang.org/stable/std/iter/)

23
iterators/iterators1.rs Normal file
View file

@ -0,0 +1,23 @@
// iterators1.rs
//
// When performing operations on elements within a collection, iterators are
// essential. This module helps you get familiar with the structure of using an
// iterator and how to go through elements within an iterable collection.
//
// Make me compile by filling in the `???`s
//
// Execute `rustlings hint iterators1` or use the `hint` watch subcommand for a
// hint.
#[test]
fn main() {
let my_fav_fruits = vec!["banana", "custard apple", "avocado", "peach", "raspberry"];
let mut my_iterable_fav_fruits = my_fav_fruits.iter(); // TODO: Step 1
assert_eq!(my_iterable_fav_fruits.next(), Some(&"banana"));
assert_eq!(my_iterable_fav_fruits.next(), Some(&"custard apple")); // TODO: Step 2
assert_eq!(my_iterable_fav_fruits.next(), Some(&"avocado"));
assert_eq!(my_iterable_fav_fruits.next(), Some(&"peach"));
assert_eq!(my_iterable_fav_fruits.next(), Some(&"raspberry"));
}

61
iterators/iterators2.rs Normal file
View file

@ -0,0 +1,61 @@
// iterators2.rs
//
// In this exercise, you'll learn some of the unique advantages that iterators
// can offer. Follow the steps to complete the exercise.
//
// Execute `rustlings hint iterators2` or use the `hint` watch subcommand for a
// hint.
// Step 1.
// Complete the `capitalize_first` function.
// "hello" -> "Hello"
pub fn capitalize_first(input: &str) -> String {
let mut c = input.chars();
match c.next() {
None => String::new(),
Some(first) => first.to_string().to_uppercase() + c.as_str(),
}
}
// Step 2.
// Apply the `capitalize_first` function to a slice of string slices.
// Return a vector of strings.
// ["hello", "world"] -> ["Hello", "World"]
pub fn capitalize_words_vector(words: &[&str]) -> Vec<String> {
words.iter().map(|word| capitalize_first(word)).collect()
}
// Step 3.
// Apply the `capitalize_first` function again to a slice of string slices.
// Return a single string.
// ["hello", " ", "world"] -> "Hello World"
pub fn capitalize_words_string(words: &[&str]) -> String {
words.iter().map(|word| capitalize_first(word)).collect()
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_success() {
assert_eq!(capitalize_first("hello"), "Hello");
}
#[test]
fn test_empty() {
assert_eq!(capitalize_first(""), "");
}
#[test]
fn test_iterate_string_vec() {
let words = vec!["hello", "world"];
assert_eq!(capitalize_words_vector(&words), ["Hello", "World"]);
}
#[test]
fn test_iterate_into_string() {
let words = vec!["hello", " ", "world"];
assert_eq!(capitalize_words_string(&words), "Hello World");
}
}

101
iterators/iterators3.rs Normal file
View file

@ -0,0 +1,101 @@
// iterators3.rs
//
// This is a bigger exercise than most of the others! You can do it! Here is
// your mission, should you choose to accept it:
// 1. Complete the divide function to get the first four tests to pass.
// 2. Get the remaining tests to pass by completing the result_with_list and
// list_of_results functions.
//
// Execute `rustlings hint iterators3` or use the `hint` watch subcommand for a
// hint.
#[derive(Debug, PartialEq, Eq)]
pub enum DivisionError {
NotDivisible(NotDivisibleError),
DivideByZero,
}
#[derive(Debug, PartialEq, Eq)]
pub struct NotDivisibleError {
dividend: i32,
divisor: i32,
}
// Calculate `a` divided by `b` if `a` is evenly divisible by `b`.
// Otherwise, return a suitable error.
pub fn divide(a: i32, b: i32) -> Result<i32, DivisionError> {
if b == 0 {
Err(DivisionError::DivideByZero)
} else if a == 0 {
Ok(0)
} else if a % b == 0 {
Ok(a / b)
} else {
Err(DivisionError::NotDivisible(NotDivisibleError {
dividend: a,
divisor: b,
}))
}
}
// Complete the function and return a value of the correct type so the test
// passes.
// Desired output: Ok([1, 11, 1426, 3])
fn result_with_list() -> Result<Vec<i32>, DivisionError> {
let numbers = vec![27, 297, 38502, 81];
let division_results = numbers.into_iter().map(|n| divide(n, 27)).collect::<Result<Vec<_>, _>>();
Ok(division_results.unwrap())
}
// Complete the function and return a value of the correct type so the test
// passes.
// Desired output: [Ok(1), Ok(11), Ok(1426), Ok(3)]
fn list_of_results() -> Vec<Result<i32, DivisionError>> {
let numbers = vec![27, 297, 38502, 81];
let division_results = numbers.into_iter().map(|n| divide(n, 27)).collect();
division_results
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_success() {
assert_eq!(divide(81, 9), Ok(9));
}
#[test]
fn test_not_divisible() {
assert_eq!(
divide(81, 6),
Err(DivisionError::NotDivisible(NotDivisibleError {
dividend: 81,
divisor: 6
}))
);
}
#[test]
fn test_divide_by_0() {
assert_eq!(divide(81, 0), Err(DivisionError::DivideByZero));
}
#[test]
fn test_divide_0_by_something() {
assert_eq!(divide(0, 81), Ok(0));
}
#[test]
fn test_result_with_list() {
assert_eq!(format!("{:?}", result_with_list()), "Ok([1, 11, 1426, 3])");
}
#[test]
fn test_list_of_results() {
assert_eq!(
format!("{:?}", list_of_results()),
"[Ok(1), Ok(11), Ok(1426), Ok(3)]"
);
}
}

42
iterators/iterators4.rs Normal file
View file

@ -0,0 +1,42 @@
// iterators4.rs
//
// Execute `rustlings hint iterators4` or use the `hint` watch subcommand for a
// hint.
pub fn factorial(mut num: u64) -> u64 {
// Complete this function to return the factorial of num
// Do not use:
// - return
// Try not to use:
// - imperative style loops (for, while)
// - additional variables
// For an extra challenge, don't use:
// - recursion
// Execute `rustlings hint iterators4` for hints.
(1..=num).product()
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn factorial_of_0() {
assert_eq!(1, factorial(0));
}
#[test]
fn factorial_of_1() {
assert_eq!(1, factorial(1));
}
#[test]
fn factorial_of_2() {
assert_eq!(2, factorial(2));
}
#[test]
fn factorial_of_4() {
assert_eq!(24, factorial(4));
}
}

156
iterators/iterators5.rs Normal file
View file

@ -0,0 +1,156 @@
// iterators5.rs
//
// Let's define a simple model to track Rustlings exercise progress. Progress
// will be modelled using a hash map. The name of the exercise is the key and
// the progress is the value. Two counting functions were created to count the
// number of exercises with a given progress. Recreate this counting
// functionality using iterators. Try not to use imperative loops (for, while).
// Only the two iterator methods (count_iterator and count_collection_iterator)
// need to be modified.
//
// Execute `rustlings hint iterators5` or use the `hint` watch subcommand for a
// hint.
use std::collections::HashMap;
#[derive(Clone, Copy, PartialEq, Eq)]
enum Progress {
None,
Some,
Complete,
}
fn count_for(map: &HashMap<String, Progress>, value: Progress) -> usize {
let mut count = 0;
for val in map.values() {
if val == &value {
count += 1;
}
}
count
}
fn count_iterator(map: &HashMap<String, Progress>, value: Progress) -> usize {
// map is a hashmap with String keys and Progress values.
// map = { "variables1": Complete, "from_str": None, ... }
map.iter().filter(|val| val.1 == &value).count()
}
fn count_collection_for(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
let mut count = 0;
for map in collection {
for val in map.values() {
if val == &value {
count += 1;
}
}
}
count
}
fn count_collection_iterator(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
// collection is a slice of hashmaps.
// collection = [{ "variables1": Complete, "from_str": None, ... },
// { "variables2": Complete, ... }, ... ]
collection
.iter()
.fold(0, |acc, x| acc + count_iterator(x, value))
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn count_complete() {
let map = get_map();
assert_eq!(3, count_iterator(&map, Progress::Complete));
}
#[test]
fn count_some() {
let map = get_map();
assert_eq!(1, count_iterator(&map, Progress::Some));
}
#[test]
fn count_none() {
let map = get_map();
assert_eq!(2, count_iterator(&map, Progress::None));
}
#[test]
fn count_complete_equals_for() {
let map = get_map();
let progress_states = vec![Progress::Complete, Progress::Some, Progress::None];
for progress_state in progress_states {
assert_eq!(
count_for(&map, progress_state),
count_iterator(&map, progress_state)
);
}
}
#[test]
fn count_collection_complete() {
let collection = get_vec_map();
assert_eq!(
6,
count_collection_iterator(&collection, Progress::Complete)
);
}
#[test]
fn count_collection_some() {
let collection = get_vec_map();
assert_eq!(1, count_collection_iterator(&collection, Progress::Some));
}
#[test]
fn count_collection_none() {
let collection = get_vec_map();
assert_eq!(4, count_collection_iterator(&collection, Progress::None));
}
#[test]
fn count_collection_equals_for() {
let progress_states = vec![Progress::Complete, Progress::Some, Progress::None];
let collection = get_vec_map();
for progress_state in progress_states {
assert_eq!(
count_collection_for(&collection, progress_state),
count_collection_iterator(&collection, progress_state)
);
}
}
fn get_map() -> HashMap<String, Progress> {
use Progress::*;
let mut map = HashMap::new();
map.insert(String::from("variables1"), Complete);
map.insert(String::from("functions1"), Complete);
map.insert(String::from("hashmap1"), Complete);
map.insert(String::from("arc1"), Some);
map.insert(String::from("as_ref_mut"), None);
map.insert(String::from("from_str"), None);
map
}
fn get_vec_map() -> Vec<HashMap<String, Progress>> {
use Progress::*;
let map = get_map();
let mut other = HashMap::new();
other.insert(String::from("variables2"), Complete);
other.insert(String::from("functions2"), Complete);
other.insert(String::from("if1"), Complete);
other.insert(String::from("from_into"), None);
other.insert(String::from("try_from_into"), None);
vec![map, other]
}
}

22
lifetimes/README.md Normal file
View file

@ -0,0 +1,22 @@
# Lifetimes
Lifetimes tell the compiler how to check whether references live long
enough to be valid in any given situation. For example lifetimes say
"make sure parameter 'a' lives as long as parameter 'b' so that the return
value is valid".
They are only necessary on borrows, i.e. references,
since copied parameters or moves are owned in their scope and cannot
be referenced outside. Lifetimes mean that calling code of e.g. functions
can be checked to make sure their arguments are valid. Lifetimes are
restrictive of their callers.
If you'd like to learn more about lifetime annotations, the
[lifetimekata](https://tfpk.github.io/lifetimekata/) project
has a similar style of exercises to Rustlings, but is all about
learning to write lifetime annotations.
## Further information
- [Lifetimes (in Rust By Example)](https://doc.rust-lang.org/stable/rust-by-example/scope/lifetime.html)
- [Validating References with Lifetimes](https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html)

25
lifetimes/lifetimes1.rs Normal file
View file

@ -0,0 +1,25 @@
// lifetimes1.rs
//
// The Rust compiler needs to know how to check whether supplied references are
// valid, so that it can let the programmer know if a reference is at risk of
// going out of scope before it is used. Remember, references are borrows and do
// not own their own data. What if their owner goes out of scope?
//
// Execute `rustlings hint lifetimes1` or use the `hint` watch subcommand for a
// hint.
fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
if x.len() > y.len() {
x
} else {
y
}
}
fn main() {
let string1 = String::from("abcd");
let string2 = "xyz";
let result = longest(string1.as_str(), string2);
println!("The longest string is '{}'", result);
}

25
lifetimes/lifetimes2.rs Normal file
View file

@ -0,0 +1,25 @@
// lifetimes2.rs
//
// So if the compiler is just validating the references passed to the annotated
// parameters and the return type, what do we need to change?
//
// Execute `rustlings hint lifetimes2` or use the `hint` watch subcommand for a
// hint.
fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
if x.len() > y.len() {
x
} else {
y
}
}
fn main() {
let string1 = String::from("long string is long");
let result;
{
let string2 = String::from("xyz");
result = longest(string1.as_str(), string2.as_str());
println!("The longest string is '{}'", result);
}
}

19
lifetimes/lifetimes3.rs Normal file
View file

@ -0,0 +1,19 @@
// lifetimes3.rs
//
// Lifetimes are also needed when structs hold references.
//
// Execute `rustlings hint lifetimes3` or use the `hint` watch subcommand for a
// hint.
struct Book<'a> {
author: &'a str,
title: &'a str,
}
fn main() {
let name = String::from("Jill Smith");
let title = String::from("Fish Flying");
let book = Book { author: &name, title: &title };
println!("{} by {}", book.title, book.author);
}

14
macros/README.md Normal file
View file

@ -0,0 +1,14 @@
# Macros
Rust's macro system is very powerful, but also kind of difficult to wrap your
head around. We're not going to teach you how to write your own fully-featured
macros. Instead, we'll show you how to use and create them.
If you'd like to learn more about writing your own macros, the
[macrokata](https://github.com/tfpk/macrokata) project has a similar style
of exercises to Rustlings, but is all about learning to write Macros.
## Further information
- [Macros](https://doc.rust-lang.org/book/ch19-06-macros.html)
- [The Little Book of Rust Macros](https://veykril.github.io/tlborm/)

14
macros/macros1.rs Normal file
View file

@ -0,0 +1,14 @@
// macros1.rs
//
// Execute `rustlings hint macros1` or use the `hint` watch subcommand for a
// hint.
macro_rules! my_macro {
() => {
println!("Check out my macro!");
};
}
fn main() {
my_macro!();
}

14
macros/macros2.rs Normal file
View file

@ -0,0 +1,14 @@
// macros2.rs
//
// Execute `rustlings hint macros2` or use the `hint` watch subcommand for a
// hint.
macro_rules! my_macro {
() => {
println!("Check out my macro!");
};
}
fn main() {
my_macro!();
}

19
macros/macros3.rs Normal file
View file

@ -0,0 +1,19 @@
// macros3.rs
//
// Make me compile, without taking the macro out of the module!
//
// Execute `rustlings hint macros3` or use the `hint` watch subcommand for a
// hint.
#[macro_use]
mod macros {
macro_rules! my_macro {
() => {
println!("Check out my macro!");
};
}
}
fn main() {
my_macro!();
}

19
macros/macros4.rs Normal file
View file

@ -0,0 +1,19 @@
// macros4.rs
//
// Execute `rustlings hint macros4` or use the `hint` watch subcommand for a
// hint.
#[rustfmt::skip]
macro_rules! my_macro {
() => {
println!("Check out my macro!");
};
($val:expr) => {
println!("Look at this other macro: {}", $val);
}
}
fn main() {
my_macro!();
my_macro!(7777);
}

7
modules/README.md Normal file
View file

@ -0,0 +1,7 @@
# Modules
In this section we'll give you an introduction to Rust's module system.
## Further information
- [The Module System](https://doc.rust-lang.org/book/ch07-00-managing-growing-projects-with-packages-crates-and-modules.html)

20
modules/modules1.rs Normal file
View file

@ -0,0 +1,20 @@
// modules1.rs
//
// Execute `rustlings hint modules1` or use the `hint` watch subcommand for a
// hint.
mod sausage_factory {
// Don't let anybody outside of this module see this!
fn get_secret_recipe() -> String {
String::from("Ginger")
}
pub fn make_sausage() {
get_secret_recipe();
println!("sausage!");
}
}
fn main() {
sausage_factory::make_sausage();
}

32
modules/modules2.rs Normal file
View file

@ -0,0 +1,32 @@
// modules2.rs
//
// You can bring module paths into scopes and provide new names for them with
// the 'use' and 'as' keywords. Fix these 'use' statements to make the code
// compile.
//
// Execute `rustlings hint modules2` or use the `hint` watch subcommand for a
// hint.
mod delicious_snacks {
// TODO: Fix these use statements
pub use self::fruits::PEAR as fruit;
pub use self::veggies::CUCUMBER as veggie;
mod fruits {
pub const PEAR: &'static str = "Pear";
pub const APPLE: &'static str = "Apple";
}
mod veggies {
pub const CUCUMBER: &'static str = "Cucumber";
pub const CARROT: &'static str = "Carrot";
}
}
fn main() {
println!(
"favorite snacks: {} and {}",
delicious_snacks::fruit,
delicious_snacks::veggie
);
}

19
modules/modules3.rs Normal file
View file

@ -0,0 +1,19 @@
// modules3.rs
//
// You can use the 'use' keyword to bring module paths from modules from
// anywhere and especially from the Rust standard library into your scope. Bring
// SystemTime and UNIX_EPOCH from the std::time module. Bonus style points if
// you can do it with one line!
//
// Execute `rustlings hint modules3` or use the `hint` watch subcommand for a
// hint.
// TODO: Complete this use statement
use std::time::{SystemTime,UNIX_EPOCH};
fn main() {
match SystemTime::now().duration_since(UNIX_EPOCH) {
Ok(n) => println!("1970-01-01 00:00:00 UTC was {} seconds ago!", n.as_secs()),
Err(_) => panic!("SystemTime before UNIX EPOCH!"),
}
}

10
move_semantics/README.md Normal file
View file

@ -0,0 +1,10 @@
# Move Semantics
These exercises are adapted from [pnkfelix](https://github.com/pnkfelix)'s [Rust Tutorial](https://pnkfelix.github.io/rust-examples-icfp2014/) -- Thank you Felix!!!
## Further information
For this section, the book links are especially important.
- [Ownership](https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html)
- [Reference and borrowing](https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html)

View file

@ -0,0 +1,21 @@
// move_semantics1.rs
//
// Execute `rustlings hint move_semantics1` or use the `hint` watch subcommand
// for a hint.
#[test]
fn main() {
let vec0 = vec![22, 44, 66];
let vec1 = fill_vec(vec0);
assert_eq!(vec1, vec![22, 44, 66, 88]);
}
fn fill_vec(vec: Vec<i32>) -> Vec<i32> {
let mut vec = vec;
vec.push(88);
vec
}

View file

@ -0,0 +1,24 @@
// move_semantics2.rs
//
// Make the test pass by finding a way to keep both Vecs separate!
//
// Execute `rustlings hint move_semantics2` or use the `hint` watch subcommand
// for a hint.
#[test]
fn main() {
let vec0 = vec![22, 44, 66];
let mut vec1 = fill_vec(vec0.clone());
assert_eq!(vec0, vec![22, 44, 66]);
assert_eq!(vec1, vec![22, 44, 66, 88]);
}
fn fill_vec(vec: Vec<i32>) -> Vec<i32> {
let mut vec = vec;
vec.push(88);
vec
}

View file

@ -0,0 +1,22 @@
// move_semantics3.rs
//
// Make me compile without adding new lines -- just changing existing lines! (no
// lines with multiple semicolons necessary!)
//
// Execute `rustlings hint move_semantics3` or use the `hint` watch subcommand
// for a hint.
#[test]
fn main() {
let vec0 = vec![22, 44, 66];
let vec1 = fill_vec(vec0);
assert_eq!(vec1, vec![22, 44, 66, 88]);
}
fn fill_vec(mut vec: Vec<i32>) -> Vec<i32> {
vec.push(88);
vec
}

View file

@ -0,0 +1,25 @@
// move_semantics4.rs
//
// Refactor this code so that instead of passing `vec0` into the `fill_vec`
// function, the Vector gets created in the function itself and passed back to
// the main function.
//
// Execute `rustlings hint move_semantics4` or use the `hint` watch subcommand
// for a hint.
#[test]
fn main() {
let mut vec1 = fill_vec();
assert_eq!(vec1, vec![22, 44, 66, 88]);
}
// `fill_vec()` no longer takes `vec: Vec<i32>` as argument - don't change this!
fn fill_vec() -> Vec<i32> {
let mut vec = vec![22, 44, 66];
vec.push(88);
vec
}

View file

@ -0,0 +1,17 @@
// move_semantics5.rs
//
// Make me compile only by reordering the lines in `main()`, but without adding,
// changing or removing any of them.
//
// Execute `rustlings hint move_semantics5` or use the `hint` watch subcommand
// for a hint.
#[test]
fn main() {
let mut x = 100;
let y = &mut x;
*y += 100;
let z = &mut x;
*z += 1000;
assert_eq!(x, 1200);
}

View file

@ -0,0 +1,26 @@
// move_semantics6.rs
//
// You can't change anything except adding or removing references.
//
// Execute `rustlings hint move_semantics6` or use the `hint` watch subcommand
// for a hint.
fn main() {
let data = "Rust is great!".to_string();
get_char(&data);
string_uppercase(data);
}
// Should not take ownership
fn get_char(data: &String) -> char {
data.chars().last().unwrap()
}
// Should take ownership
fn string_uppercase(mut data: String) {
data = data.to_uppercase();
println!("{}", data);
}

21
options/README.md Normal file
View file

@ -0,0 +1,21 @@
# Options
Type Option represents an optional value: every Option is either Some and contains a value, or None, and does not.
Option types are very common in Rust code, as they have a number of uses:
- Initial values
- Return values for functions that are not defined over their entire input range (partial functions)
- Return value for otherwise reporting simple errors, where None is returned on error
- Optional struct fields
- Struct fields that can be loaned or "taken"
- Optional function arguments
- Nullable pointers
- Swapping things out of difficult situations
## Further Information
- [Option Enum Format](https://doc.rust-lang.org/stable/book/ch10-01-syntax.html#in-enum-definitions)
- [Option Module Documentation](https://doc.rust-lang.org/std/option/)
- [Option Enum Documentation](https://doc.rust-lang.org/std/option/enum.Option.html)
- [if let](https://doc.rust-lang.org/rust-by-example/flow_control/if_let.html)
- [while let](https://doc.rust-lang.org/rust-by-example/flow_control/while_let.html)

44
options/options1.rs Normal file
View file

@ -0,0 +1,44 @@
// options1.rs
//
// Execute `rustlings hint options1` or use the `hint` watch subcommand for a
// hint.
// This function returns how much icecream there is left in the fridge.
// If it's before 10PM, there's 5 pieces left. At 10PM, someone eats them
// all, so there'll be no more left :(
fn maybe_icecream(time_of_day: u16) -> Option<u16> {
// We use the 24-hour system here, so 10PM is a value of 22 and 12AM is a
// value of 0 The Option output should gracefully handle cases where
// time_of_day > 23.
// TODO: Complete the function body - remember to return an Option!
if time_of_day < 22 {
Some(5)
} else if time_of_day > 24 {
None
} else {
Some(0)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn check_icecream() {
assert_eq!(maybe_icecream(9), Some(5));
assert_eq!(maybe_icecream(10), Some(5));
assert_eq!(maybe_icecream(23), Some(0));
assert_eq!(maybe_icecream(22), Some(0));
assert_eq!(maybe_icecream(25), None);
}
#[test]
fn raw_value() {
// TODO: Fix this test. How do you get at the value contained in the
// Option?
let icecreams = maybe_icecream(12);
assert_eq!(icecreams, Some(5));
}
}

40
options/options2.rs Normal file
View file

@ -0,0 +1,40 @@
// options2.rs
//
// Execute `rustlings hint options2` or use the `hint` watch subcommand for a
// hint.
#[cfg(test)]
mod tests {
#[test]
fn simple_option() {
let target = "rustlings";
let optional_target = Some(target);
// TODO: Make this an if let statement whose value is "Some" type
if let Some(word) = optional_target {
assert_eq!(word, target);
}
}
#[test]
fn layered_option() {
let range = 10;
let mut optional_integers: Vec<Option<i8>> = vec![None];
for i in 1..(range + 1) {
optional_integers.push(Some(i));
}
let mut cursor = range;
// TODO: make this a while let statement - remember that vector.pop also
// adds another layer of Option<T>. You can stack `Option<T>`s into
// while let and if let.
while let Some(Some(integer)) = optional_integers.pop() {
assert_eq!(integer, cursor);
cursor -= 1;
}
assert_eq!(cursor, 0);
}
}

19
options/options3.rs Normal file
View file

@ -0,0 +1,19 @@
// options3.rs
//
// Execute `rustlings hint options3` or use the `hint` watch subcommand for a
// hint.
struct Point {
x: i32,
y: i32,
}
fn main() {
let y: Option<Point> = Some(Point { x: 100, y: 200 });
match y {
Some(ref p) => println!("Co-ordinates are {},{} ", p.x, p.y),
_ => panic!("no match!"),
}
y; // Fix without deleting this line.
}

View file

@ -0,0 +1,9 @@
# Primitive Types
Rust has a couple of basic types that are directly implemented into the
compiler. In this section, we'll go through the most important ones.
## Further information
- [Data Types](https://doc.rust-lang.org/stable/book/ch03-02-data-types.html)
- [The Slice Type](https://doc.rust-lang.org/stable/book/ch04-03-slices.html)

View file

@ -0,0 +1,18 @@
// primitive_types1.rs
//
// Fill in the rest of the line that has code missing! No hints, there's no
// tricks, just get used to typing these :)
fn main() {
// Booleans (`bool`)
let is_morning = true;
if is_morning {
println!("Good morning!");
}
let is_evening = true;
if is_evening {
println!("Good evening!");
}
}

View file

@ -0,0 +1,31 @@
// primitive_types2.rs
//
// Fill in the rest of the line that has code missing! No hints, there's no
// tricks, just get used to typing these :)
fn main() {
// Characters (`char`)
// Note the _single_ quotes, these are different from the double quotes
// you've been seeing around.
let my_first_initial = 'C';
if my_first_initial.is_alphabetic() {
println!("Alphabetical!");
} else if my_first_initial.is_numeric() {
println!("Numerical!");
} else {
println!("Neither alphabetic nor numeric!");
}
let your_character = '3';
// Finish this line like the example! What's your favorite character?
// Try a letter, try a number, try a special character, try a character
// from a different language than your own, try an emoji!
if your_character.is_alphabetic() {
println!("Alphabetical!");
} else if your_character.is_numeric() {
println!("Numerical!");
} else {
println!("Neither alphabetic nor numeric!");
}
}

View file

@ -0,0 +1,17 @@
// primitive_types3.rs
//
// Create an array with at least 100 elements in it where the ??? is.
//
// Execute `rustlings hint primitive_types3` or use the `hint` watch subcommand
// for a hint.
fn main() {
let a = [69; 100];
if a.len() >= 100 {
println!("Wow, that's a big array!");
} else {
println!("Meh, I eat arrays like that for breakfast.");
panic!("Array not big enough, more elements needed")
}
}

View file

@ -0,0 +1,15 @@
// primitive_types4.rs
//
// Get a slice out of Array a where the ??? is so that the test passes.
//
// Execute `rustlings hint primitive_types4` or use the `hint` watch subcommand
// for a hint.
#[test]
fn slice_out_of_array() {
let a: [u8; 5] = [1, 2, 3, 4, 5];
let nice_slice = &a[1..4];
assert_eq!([2, 3, 4], nice_slice)
}

View file

@ -0,0 +1,13 @@
// primitive_types5.rs
//
// Destructure the `cat` tuple so that the println will work.
//
// Execute `rustlings hint primitive_types5` or use the `hint` watch subcommand
// for a hint.
fn main() {
let cat = ("Furry McFurson", 3.5);
let (name, age) = cat;
println!("{} is {} years old.", name, age);
}

View file

@ -0,0 +1,17 @@
// primitive_types6.rs
//
// Use a tuple index to access the second element of `numbers`. You can put the
// expression for the second element where ??? is so that the test passes.
//
// Execute `rustlings hint primitive_types6` or use the `hint` watch subcommand
// for a hint.
#[test]
fn indexing_tuple() {
let numbers = (1, 2, 3);
// Replace below ??? with the tuple indexing syntax.
let second = numbers.1;
assert_eq!(2, second,
"This is not the 2nd number in the tuple!")
}

38
quiz1.rs Normal file
View file

@ -0,0 +1,38 @@
// quiz1.rs
//
// This is a quiz for the following sections:
// - Variables
// - Functions
// - If
//
// Mary is buying apples. The price of an apple is calculated as follows:
// - An apple costs 2 rustbucks.
// - If Mary buys more than 40 apples, each apple only costs 1 rustbuck!
// Write a function that calculates the price of an order of apples given the
// quantity bought.
//
// No hints this time ;)
fn calculate_price_of_apples(qty: u8) -> u8 {
let price = if qty > 40 {
1
} else {
2
};
qty * price
}
// Don't modify this function!
#[test]
fn verify_test() {
let price1 = calculate_price_of_apples(35);
let price2 = calculate_price_of_apples(40);
let price3 = calculate_price_of_apples(41);
let price4 = calculate_price_of_apples(65);
assert_eq!(70, price1);
assert_eq!(80, price2);
assert_eq!(41, price3);
assert_eq!(65, price4);
}

70
quiz2.rs Normal file
View file

@ -0,0 +1,70 @@
// quiz2.rs
//
// This is a quiz for the following sections:
// - Strings
// - Vecs
// - Move semantics
// - Modules
// - Enums
//
// Let's build a little machine in the form of a function. As input, we're going
// to give a list of strings and commands. These commands determine what action
// is going to be applied to the string. It can either be:
// - Uppercase the string
// - Trim the string
// - Append "bar" to the string a specified amount of times
// The exact form of this will be:
// - The input is going to be a Vector of a 2-length tuple,
// the first element is the string, the second one is the command.
// - The output element is going to be a Vector of strings.
//
// No hints this time!
pub enum Command {
Uppercase,
Trim,
Append(usize),
}
mod my_module {
use super::Command;
// TODO: Complete the function signature!
pub fn transformer(input: Vec<(String, Command)>) -> Vec<String> {
let mut output: Vec<String> = vec![];
for (string, command) in input.iter() {
match command {
Command::Uppercase => output.push(string.to_uppercase()),
Command::Trim => output.push(string.trim().to_string()),
Command::Append(n) => output.push(format!(
"{}{}",
string.to_string(),
std::iter::repeat("bar").take(*n).collect::<String>()
)),
};
}
output
}
}
#[cfg(test)]
mod tests {
// TODO: What do we need to import to have `transformer` in scope?
use super::Command;
use crate::my_module::transformer;
#[test]
fn it_works() {
let output = transformer(vec![
("hello".into(), Command::Uppercase),
(" all roads lead to rome! ".into(), Command::Trim),
("foo".into(), Command::Append(1)),
("bar".into(), Command::Append(5)),
]);
assert_eq!(output[0], "HELLO");
assert_eq!(output[1], "all roads lead to rome!");
assert_eq!(output[2], "foobar");
assert_eq!(output[3], "barbarbarbarbarbar");
}
}

64
quiz3.rs Normal file
View file

@ -0,0 +1,64 @@
// quiz3.rs
//
// This quiz tests:
// - Generics
// - Traits
//
// An imaginary magical school has a new report card generation system written
// in Rust! Currently the system only supports creating report cards where the
// student's grade is represented numerically (e.g. 1.0 -> 5.5). However, the
// school also issues alphabetical grades (A+ -> F-) and needs to be able to
// print both types of report card!
//
// Make the necessary code changes in the struct ReportCard and the impl block
// to support alphabetical report cards. Change the Grade in the second test to
// "A+" to show that your changes allow alphabetical grades.
//
// Execute `rustlings hint quiz3` or use the `hint` watch subcommand for a hint.
use std::fmt::Display;
pub struct ReportCard<T> {
pub grade: T,
pub student_name: String,
pub student_age: u8,
}
impl<T: Display> ReportCard<T> {
pub fn print(&self) -> String {
format!("{} ({}) - achieved a grade of {}",
&self.student_name, &self.student_age, &self.grade)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn generate_numeric_report_card() {
let report_card = ReportCard {
grade: 2.1,
student_name: "Tom Wriggle".to_string(),
student_age: 12,
};
assert_eq!(
report_card.print(),
"Tom Wriggle (12) - achieved a grade of 2.1"
);
}
#[test]
fn generate_alphabetic_report_card() {
// TODO: Make sure to change the grade here after you finish the exercise.
let report_card = ReportCard {
grade: "A+",
student_name: "Gary Plotter".to_string(),
student_age: 11,
};
assert_eq!(
report_card.print(),
"Gary Plotter (11) - achieved a grade of A+"
);
}
}

12
smart_pointers/README.md Normal file
View file

@ -0,0 +1,12 @@
# Smart Pointers
In Rust, smart pointers are variables that contain an address in memory and reference some other data, but they also have additional metadata and capabilities.
Smart pointers in Rust often own the data they point to, while references only borrow data.
## Further Information
- [Smart Pointers](https://doc.rust-lang.org/book/ch15-00-smart-pointers.html)
- [Using Box to Point to Data on the Heap](https://doc.rust-lang.org/book/ch15-01-box.html)
- [Rc\<T\>, the Reference Counted Smart Pointer](https://doc.rust-lang.org/book/ch15-04-rc.html)
- [Shared-State Concurrency](https://doc.rust-lang.org/book/ch16-03-shared-state.html)
- [Cow Documentation](https://doc.rust-lang.org/std/borrow/enum.Cow.html)

43
smart_pointers/arc1.rs Normal file
View file

@ -0,0 +1,43 @@
// arc1.rs
//
// In this exercise, we are given a Vec of u32 called "numbers" with values
// ranging from 0 to 99 -- [ 0, 1, 2, ..., 98, 99 ] We would like to use this
// set of numbers within 8 different threads simultaneously. Each thread is
// going to get the sum of every eighth value, with an offset.
//
// The first thread (offset 0), will sum 0, 8, 16, ...
// The second thread (offset 1), will sum 1, 9, 17, ...
// The third thread (offset 2), will sum 2, 10, 18, ...
// ...
// The eighth thread (offset 7), will sum 7, 15, 23, ...
//
// Because we are using threads, our values need to be thread-safe. Therefore,
// we are using Arc. We need to make a change in each of the two TODOs.
//
// Make this code compile by filling in a value for `shared_numbers` where the
// first TODO comment is, and create an initial binding for `child_numbers`
// where the second TODO comment is. Try not to create any copies of the
// `numbers` Vec!
//
// Execute `rustlings hint arc1` or use the `hint` watch subcommand for a hint.
#![forbid(unused_imports)] // Do not change this, (or the next) line.
use std::sync::Arc;
use std::thread;
fn main() {
let numbers: Vec<_> = (0..100u32).collect();
let shared_numbers = Arc::new(numbers);
let mut joinhandles = Vec::new();
for offset in 0..8 {
let child_numbers = shared_numbers.clone();
joinhandles.push(thread::spawn(move || {
let sum: u32 = child_numbers.iter().filter(|&&n| n % 8 == offset).sum();
println!("Sum of offset {} is {}", offset, sum);
}));
}
for handle in joinhandles.into_iter() {
handle.join().unwrap();
}
}

56
smart_pointers/box1.rs Normal file
View file

@ -0,0 +1,56 @@
// box1.rs
//
// At compile time, Rust needs to know how much space a type takes up. This
// becomes problematic for recursive types, where a value can have as part of
// itself another value of the same type. To get around the issue, we can use a
// `Box` - a smart pointer used to store data on the heap, which also allows us
// to wrap a recursive type.
//
// The recursive type we're implementing in this exercise is the `cons list` - a
// data structure frequently found in functional programming languages. Each
// item in a cons list contains two elements: the value of the current item and
// the next item. The last item is a value called `Nil`.
//
// Step 1: use a `Box` in the enum definition to make the code compile
// Step 2: create both empty and non-empty cons lists by replacing `todo!()`
//
// Note: the tests should not be changed
//
// Execute `rustlings hint box1` or use the `hint` watch subcommand for a hint.
#[derive(PartialEq, Debug)]
pub enum List {
Cons(i32, Box<List>),
Nil,
}
fn main() {
println!("This is an empty cons list: {:?}", create_empty_list());
println!(
"This is a non-empty cons list: {:?}",
create_non_empty_list()
);
}
pub fn create_empty_list() -> List {
List::Nil
}
pub fn create_non_empty_list() -> List {
List::Cons(3, Box::new(List::Nil))
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_create_empty_list() {
assert_eq!(List::Nil, create_empty_list())
}
#[test]
fn test_create_non_empty_list() {
assert_ne!(create_empty_list(), create_non_empty_list())
}
}

79
smart_pointers/cow1.rs Normal file
View file

@ -0,0 +1,79 @@
// cow1.rs
//
// This exercise explores the Cow, or Clone-On-Write type. Cow is a
// clone-on-write smart pointer. It can enclose and provide immutable access to
// borrowed data, and clone the data lazily when mutation or ownership is
// required. The type is designed to work with general borrowed data via the
// Borrow trait.
//
// This exercise is meant to show you what to expect when passing data to Cow.
// Fix the unit tests by checking for Cow::Owned(_) and Cow::Borrowed(_) at the
// TODO markers.
//
// Execute `rustlings hint cow1` or use the `hint` watch subcommand for a hint.
use std::borrow::Cow;
fn abs_all<'a, 'b>(input: &'a mut Cow<'b, [i32]>) -> &'a mut Cow<'b, [i32]> {
for i in 0..input.len() {
let v = input[i];
if v < 0 {
// Clones into a vector if not already owned.
input.to_mut()[i] = -v;
}
}
input
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn reference_mutation() -> Result<(), &'static str> {
// Clone occurs because `input` needs to be mutated.
let slice = [-1, 0, 1];
let mut input = Cow::from(&slice[..]);
match abs_all(&mut input) {
Cow::Owned(_) => Ok(()),
_ => Err("Expected owned value"),
}
}
#[test]
fn reference_no_mutation() -> Result<(), &'static str> {
// No clone occurs because `input` doesn't need to be mutated.
let slice = [0, 1, 2];
let mut input = Cow::from(&slice[..]);
match abs_all(&mut input) {
Cow::Borrowed(_) => Ok(()),
_ => Err("Expected borrowed value"),
}
}
#[test]
fn owned_no_mutation() -> Result<(), &'static str> {
// We can also pass `slice` without `&` so Cow owns it directly. In this
// case no mutation occurs and thus also no clone, but the result is
// still owned because it was never borrowed or mutated.
let slice = vec![0, 1, 2];
let mut input = Cow::from(slice);
match abs_all(&mut input) {
Cow::Owned(_) => Ok(()),
_ => Err("Expected owned value"),
}
}
#[test]
fn owned_mutation() -> Result<(), &'static str> {
// Of course this is also the case if a mutation does occur. In this
// case the call to `to_mut()` in the abs_all() function returns a
// reference to the same data as before.
let slice = vec![-1, 0, 1];
let mut input = Cow::from(slice);
match abs_all(&mut input) {
Cow::Owned(_) => Ok(()),
_ => Err("Expected owned value"),
}
}
}

Some files were not shown because too many files have changed in this diff Show more