Compare commits

...

10 commits

Author SHA1 Message Date
Adam
3103d8282c docker 2023-06-22 18:14:37 -04:00
Adam
407feec20e use ensurepip to ensure pip 2023-05-04 18:11:40 -04:00
Adam
2e4395cd76 run 2023-03-07 13:10:00 -05:00
Adam
062abb61b3 m 2023-03-02 02:12:02 -05:00
Adam
437312897e readme 2023-02-12 21:45:21 -05:00
Adam
553ded1bc8 mhm 2023-02-12 21:40:39 -05:00
Adam
eac217cc09 better model 2023-02-12 20:14:11 -05:00
Adam
7a0e2b1411 retrain 2023-02-12 15:03:47 -05:00
Adam
667d98c017 ahem 2023-02-11 22:47:43 -05:00
Adam
0596869223 support arm 2023-02-11 21:09:48 -05:00
13 changed files with 8989 additions and 8901 deletions

1
.gitignore vendored Normal file
View file

@ -0,0 +1 @@
*.tar.gz

View file

@ -1,13 +1,11 @@
bin __pycache__/
bin/
lib/
build build
Dockerfile-alpine run
lib */__pycache__/
__pycache__ */*/__pycache__/
*/__pycache__ */*/*/__pycache__/
*/*/__pycache__
*/*/*/__pycache__
pyvenv.cfg pyvenv.cfg
readme.md readme.md
run chatbots_*
test
chatbots_api.tar.gz

View file

@ -1,9 +1,7 @@
# syntax-docker/dockerfile:1 # syntax-docker/dockerfile:1
FROM python:slim FROM python:3.10-slim
WORKDIR /app COPY . .
COPY requirements.txt requirements.txt
ENV PYTHONUNBUFFERED=1 ENV PYTHONUNBUFFERED=1
RUN pip install --no-cache-dir -r requirements.txt RUN pip install --no-cache-dir -r requirements.txt
CMD [ "python3", "main.py"]
COPY . . EXPOSE 6969
CMD [ "uvicorn", "chatbots:api", "--proxy-headers", "--host", "0.0.0.0", "--port", "8000"]

View file

@ -1,5 +1,11 @@
#!/bin/bash #!/bin/bash
docker build --tag chatbots_api . FILE_PATH="../chatbots_api_$(uname -m).tar.gz"
docker save chatbots_api | pigz > chatbots_api_$(uname -m).tar.gz
if [ -f $FILE_PATH ]; then
rm $FILE_PATH
fi
#python -m nuitka --include-module=src --follow-imports --enable-plugin=torch main.py
docker build --tag chatbots_api .
docker save chatbots_api | pigz > $FILE_PATH

6
api/main.py Normal file
View file

@ -0,0 +1,6 @@
import uvicorn
import multiprocessing
if __name__ == "__main__":
multiprocessing.freeze_support()
uvicorn.run('src.chatbots:api', host='0.0.0.0', port=6969, reload=True)

View file

@ -1,9 +1,15 @@
# Chatbots API # Chatbots API
FastAPI and PyTorch [FastAPI](https://fastapi.tiangolo.com/) and [PyTorch](https://pytorch.org/)
To build yourself you'll need to first train a model with ../train To build one yourself you'll need to first [train a model](../train),
place the entire directory (checkpoints aren't needed) containing pytorch_model.bin in [bots](./src/bots),
then edit or duplicate [cartman.py](./src/bots/cartman.py).
My image compressed is 2.1GB Cartman Docker images are availible for
[x86_64](https://doordesk.net/files/chatbots_api_x86_64.tar.gz) (1.6GB) and
[aarch64](https://doordesk.net/files/chatbots_api_x86_64.tar.gz) (1.4GB)
Scripts in test to talk to it See [run](./run) and [test](./test) to interact with it
Live demo [here](https://doordesk.net/cartman)

View file

@ -1,3 +1,7 @@
#!/bin/bash #!/bin/bash
docker run -d -p 6969:8000 chatbots_api source bin/activate &&
python -m ensurepip &&
pip install --upgrade -r requirements.txt &&
clear &&
python main.py

View file

@ -4,10 +4,10 @@ from transformers.models.auto.tokenization_auto import AutoTokenizer
from transformers.models.auto.modeling_auto import AutoModelForCausalLM from transformers.models.auto.modeling_auto import AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained( tokenizer = AutoTokenizer.from_pretrained(
"microsoft/DialoGPT-large", padding_side='left' "microsoft/DialoGPT-medium"
) )
model = AutoModelForCausalLM.from_pretrained( model = AutoModelForCausalLM.from_pretrained(
"src/bots/cartman" "src/bots/cartman_med_3ep"
) )

4
api/chatbots.py → api/src/chatbots.py Executable file → Normal file
View file

@ -1,8 +1,8 @@
from fastapi import FastAPI from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware from fastapi.middleware.cors import CORSMiddleware
from src.models import Packet, BotResponse from .models import Packet, BotResponse
from src.bots.cartman import cartman from .bots.cartman import cartman
api = FastAPI() api = FastAPI()

2
train/.gitignore vendored
View file

@ -1,3 +1,5 @@
__pycache__/ __pycache__/
.ipynb_checkpoints/ .ipynb_checkpoints/
cartman/ cartman/
cached/
runs/

28
train/clean.py Normal file
View file

@ -0,0 +1,28 @@
import pandas as pd
INPUT_FILE_PATH = './data/All-seasons.csv'
OUPUT_FILE_PATH = './data/train_data.csv'
df = pd.read_csv(INPUT_FILE_PATH)
clean_lines = pd.Series(
[filter_lines
.replace('\n', '')
.replace('(', '')
.replace(')', '')
.replace(' ', ' ')
.strip()
for filter_lines in df.Line
]
)
train_data = pd.DataFrame(df.Character)
del df
train_data['line'] = clean_lines
train_data.columns = ['name', 'line']
train_data.to_csv(OUPUT_FILE_PATH, index=False)

File diff suppressed because it is too large Load diff

View file

@ -1,5 +1,20 @@
# all the imports # all the imports
from transformers.models.auto.configuration_auto import AutoConfig
from transformers.modeling_utils import PreTrainedModel
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.models.auto.tokenization_auto import AutoTokenizer
from transformers.models.auto.modeling_auto import (
AutoModelForCausalLM,
MODEL_WITH_LM_HEAD_MAPPING,
)
from transformers.utils import WEIGHTS_NAME
from transformers.optimization import (
AdamW,
get_linear_schedule_with_warmup,
)
import torch
import glob import glob
import logging import logging
import os import os
@ -15,33 +30,22 @@ import pandas as pd
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split
from torch.nn.utils.rnn import pad_sequence from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler from torch.utils.data import (
from torch.utils.data.distributed import DistributedSampler DataLoader,
from tqdm.notebook import tqdm, trange Dataset,
RandomSampler,
from pathlib import Path SequentialSampler,
from transformers import (
MODEL_WITH_LM_HEAD_MAPPING,
WEIGHTS_NAME,
AdamW,
AutoConfig,
PreTrainedModel,
PreTrainedTokenizer,
get_linear_schedule_with_warmup,
) )
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from torch.utils.tensorboard.writer import SummaryWriter
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
# -------------------------------------------------------------------------- # --------------------------------------------------------------------------
data = pd.read_csv('data/train.csv') data = pd.read_csv('data/train.csv')
CHARACTER_NAME = 'TARGET' CHARACTER_NAME = 'Cartman'
contexted = [] contexted = []
# context window of size 7 # context window of size 7
@ -51,12 +55,12 @@ for i in data[data.name == CHARACTER_NAME].index:
if i < n: if i < n:
continue continue
row = [] row = []
prev = i - 1 - n # we additionally substract 1, so row will contain current response and 7 previous responses prev = i - 1 - n # we additionally substract 1, so row will contain current response and 7 previous responses
for j in range(i, prev, -1): for j in range(i, prev, -1):
row.append(data.line[j]) row.append(data.line[j])
contexted.append(row) contexted.append(row)
columns = ['response', 'context'] columns = ['response', 'context']
columns = columns + ['context/' + str(i) for i in range(n - 1)] columns = columns + ['context/' + str(i) for i in range(n - 1)]
df = pd.DataFrame.from_records(contexted, columns=columns) df = pd.DataFrame.from_records(contexted, columns=columns)
@ -64,16 +68,21 @@ df = pd.DataFrame.from_records(contexted, columns=columns)
trn_df, val_df = train_test_split(df, test_size=0.1) trn_df, val_df = train_test_split(df, test_size=0.1)
# create dataset suitable for our model # create dataset suitable for our model
def construct_conv(row, tokenizer, eos = True):
flatten = lambda l: [item for sublist in l for item in sublist]
conv = list(reversed([tokenizer.encode(x) + [tokenizer.eos_token_id] for x in row])) def construct_conv(row, tokenizer, eos=True):
def flatten(l): return [item for sublist in l for item in sublist]
conv = list(
reversed([tokenizer.encode(x) + [tokenizer.eos_token_id] for x in row]))
conv = flatten(conv) conv = flatten(conv)
return conv return conv
class ConversationDataset(Dataset): class ConversationDataset(Dataset):
def __init__(self, tokenizer: PreTrainedTokenizer, args, df, block_size=512): def __init__(self, tokenizer: PreTrainedTokenizer, args, df, block_size=512):
block_size = block_size - (tokenizer.model_max_length - tokenizer.max_len_single_sentence) block_size = block_size - \
(tokenizer.model_max_length - tokenizer.max_len_single_sentence)
directory = args.cache_dir directory = args.cache_dir
cached_features_file = os.path.join( cached_features_file = os.path.join(
@ -81,7 +90,8 @@ class ConversationDataset(Dataset):
) )
if os.path.exists(cached_features_file) and not args.overwrite_cache: if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file) logger.info("Loading features from cached file %s",
cached_features_file)
with open(cached_features_file, "rb") as handle: with open(cached_features_file, "rb") as handle:
self.examples = pickle.load(handle) self.examples = pickle.load(handle)
else: else:
@ -92,9 +102,11 @@ class ConversationDataset(Dataset):
conv = construct_conv(row, tokenizer) conv = construct_conv(row, tokenizer)
self.examples.append(conv) self.examples.append(conv)
logger.info("Saving features into cached file %s", cached_features_file) logger.info("Saving features into cached file %s",
cached_features_file)
with open(cached_features_file, "wb") as handle: with open(cached_features_file, "wb") as handle:
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL) pickle.dump(self.examples, handle,
protocol=pickle.HIGHEST_PROTOCOL)
def __len__(self): def __len__(self):
return len(self.examples) return len(self.examples)
@ -102,7 +114,8 @@ class ConversationDataset(Dataset):
def __getitem__(self, item): def __getitem__(self, item):
return torch.tensor(self.examples[item], dtype=torch.long) return torch.tensor(self.examples[item], dtype=torch.long)
# Cacheing and storing of data/checkpoints # Caching and storing of data/checkpoints
def load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False): def load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False):
return ConversationDataset(tokenizer, args, df_val if evaluate else df_trn) return ConversationDataset(tokenizer, args, df_val if evaluate else df_trn)
@ -119,15 +132,18 @@ def set_seed(args):
def _sorted_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> List[str]: def _sorted_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> List[str]:
ordering_and_checkpoint_path = [] ordering_and_checkpoint_path = []
glob_checkpoints = glob.glob(os.path.join(args.output_dir, "{}-*".format(checkpoint_prefix))) glob_checkpoints = glob.glob(os.path.join(
args.output_dir, "{}-*".format(checkpoint_prefix)))
for path in glob_checkpoints: for path in glob_checkpoints:
if use_mtime: if use_mtime:
ordering_and_checkpoint_path.append((os.path.getmtime(path), path)) ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
else: else:
regex_match = re.match(".*{}-([0-9]+)".format(checkpoint_prefix), path) regex_match = re.match(
".*{}-([0-9]+)".format(checkpoint_prefix), path)
if regex_match and regex_match.groups(): if regex_match and regex_match.groups():
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path)) ordering_and_checkpoint_path.append(
(int(regex_match.groups()[0]), path))
checkpoints_sorted = sorted(ordering_and_checkpoint_path) checkpoints_sorted = sorted(ordering_and_checkpoint_path)
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted] checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
@ -141,18 +157,19 @@ def _rotate_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -
return return
# Check if we should delete older checkpoint(s) # Check if we should delete older checkpoint(s)
checkpoints_sorted = _sorted_checkpoints(args, checkpoint_prefix, use_mtime) checkpoints_sorted = _sorted_checkpoints(
args, checkpoint_prefix, use_mtime)
if len(checkpoints_sorted) <= args.save_total_limit: if len(checkpoints_sorted) <= args.save_total_limit:
return return
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - args.save_total_limit) number_of_checkpoints_to_delete = max(
0, len(checkpoints_sorted) - args.save_total_limit)
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete] checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
for checkpoint in checkpoints_to_be_deleted: for checkpoint in checkpoints_to_be_deleted:
logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint)) logger.info(
"Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
shutil.rmtree(checkpoint) shutil.rmtree(checkpoint)
from transformers import AutoModelWithLMHead, AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large") tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
@ -170,13 +187,15 @@ MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
# Args to allow for easy conversion of python script to notebook # Args to allow for easy conversion of python script to notebook
class Args(): class Args():
def __init__(self): def __init__(self):
self.output_dir = 'models/output-medium' self.output_dir = 'cartman/models/output-medium-3ep'
self.model_type = 'gpt2' self.model_type = 'gpt2'
self.model_name_or_path = 'microsoft/DialoGPT-large' self.model_name_or_path = 'microsoft/DialoGPT-medium'
self.config_name = 'microsoft/DialoGPT-large' self.config_name = 'microsoft/DialoGPT-medium'
self.tokenizer_name = 'microsoft/DialoGPT-large' self.tokenizer_name = 'microsoft/DialoGPT-medium'
self.cache_dir = 'cached' self.cache_dir = 'cached'
self.block_size = 512 self.block_size = 512
self.do_train = True self.do_train = True
@ -189,7 +208,7 @@ class Args():
self.weight_decay = 0.0 self.weight_decay = 0.0
self.adam_epsilon = 1e-8 self.adam_epsilon = 1e-8
self.max_grad_norm = 1.0 self.max_grad_norm = 1.0
self.num_train_epochs = 4 self.num_train_epochs = 3
self.max_steps = -1 self.max_steps = -1
self.warmup_steps = 0 self.warmup_steps = 0
self.logging_steps = 1000 self.logging_steps = 1000
@ -205,8 +224,10 @@ class Args():
self.fp16 = False self.fp16 = False
self.fp16_opt_level = 'O1' self.fp16_opt_level = 'O1'
args = Args() args = Args()
def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedTokenizer) -> Tuple[int, float]: def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedTokenizer) -> Tuple[int, float]:
""" Train the model """ """ Train the model """
if args.local_rank in [-1, 0]: if args.local_rank in [-1, 0]:
@ -219,22 +240,25 @@ def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedToke
return pad_sequence(examples, batch_first=True) return pad_sequence(examples, batch_first=True)
return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id) return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_sampler = RandomSampler(
train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader( train_dataloader = DataLoader(
train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=collate, drop_last = True train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=collate, drop_last=True
) )
if args.max_steps > 0: if args.max_steps > 0:
t_total = args.max_steps t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 args.num_train_epochs = args.max_steps // (
len(train_dataloader) // args.gradient_accumulation_steps) + 1
else: else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs t_total = len(
train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
model = model.module if hasattr(model, "module") else model # Take care of distributed/parallel training # Take care of distributed/parallel training
model = model.module if hasattr(model, "module") else model
model.resize_token_embeddings(len(tokenizer)) model.resize_token_embeddings(len(tokenizer))
# add_special_tokens_(model, tokenizer) # add_special_tokens_(model, tokenizer)
# Prepare optimizer and schedule (linear warmup and decay) # Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"] no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [ optimizer_grouped_parameters = [
@ -242,9 +266,11 @@ def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedToke
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay, "weight_decay": args.weight_decay,
}, },
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, {"params": [p for n, p in model.named_parameters() if any(
nd in n for nd in no_decay)], "weight_decay": 0.0},
] ]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) optimizer = AdamW(optimizer_grouped_parameters,
lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup( scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
) )
@ -256,15 +282,19 @@ def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedToke
and os.path.isfile(os.path.join(args.model_name_or_path, "scheduler.pt")) and os.path.isfile(os.path.join(args.model_name_or_path, "scheduler.pt"))
): ):
# Load in optimizer and scheduler states # Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) optimizer.load_state_dict(torch.load(
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(
os.path.join(args.model_name_or_path, "scheduler.pt")))
if args.fp16: if args.fp16:
try: try:
from apex import amp from apex import amp
except ImportError: except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") raise ImportError(
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) "Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(
model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization) # multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1: if args.n_gpu > 1:
@ -273,21 +303,24 @@ def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedToke
# Distributed training (should be after apex fp16 initialization) # Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1: if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel( model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True model, device_ids=[
args.local_rank], output_device=args.local_rank, find_unused_parameters=True
) )
# Train! # Train!
logger.info("***** Running training *****") logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info(" Instantaneous batch size per GPU = %d",
args.per_gpu_train_batch_size)
logger.info( logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d", " Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size args.train_batch_size
* args.gradient_accumulation_steps * args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1), * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
) )
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Gradient Accumulation steps = %d",
args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total) logger.info(" Total optimization steps = %d", t_total)
global_step = 0 global_step = 0
@ -297,15 +330,21 @@ def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedToke
if args.model_name_or_path and os.path.exists(args.model_name_or_path): if args.model_name_or_path and os.path.exists(args.model_name_or_path):
try: try:
# set global_step to gobal_step of last saved checkpoint from model path # set global_step to gobal_step of last saved checkpoint from model path
checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0] checkpoint_suffix = args.model_name_or_path.split(
"-")[-1].split("/")[0]
global_step = int(checkpoint_suffix) global_step = int(checkpoint_suffix)
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) epochs_trained = global_step // (len(train_dataloader) //
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (
len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(
" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step) logger.info(
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) " Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch",
steps_trained_in_current_epoch)
except ValueError: except ValueError:
logger.info(" Starting fine-tuning.") logger.info(" Starting fine-tuning.")
@ -317,7 +356,8 @@ def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedToke
) )
set_seed(args) # Added here for reproducibility set_seed(args) # Added here for reproducibility
for _ in train_iterator: for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) epoch_iterator = tqdm(train_dataloader, desc="Iteration",
disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator): for step, batch in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training # Skip past any already trained steps if resuming training
@ -326,12 +366,14 @@ def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedToke
continue continue
inputs, labels = (batch, batch) inputs, labels = (batch, batch)
if inputs.shape[1] > 1024: continue if inputs.shape[1] > 1024:
continue
inputs = inputs.to(args.device) inputs = inputs.to(args.device)
labels = labels.to(args.device) labels = labels.to(args.device)
model.train() model.train()
outputs = model(inputs, labels=labels) outputs = model(inputs, labels=labels)
loss = outputs[0] # model outputs are always tuple in transformers (see doc) # model outputs are always tuple in transformers (see doc)
loss = outputs[0]
if args.n_gpu > 1: if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training loss = loss.mean() # mean() to average on multi-gpu parallel training
@ -347,9 +389,11 @@ def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedToke
tr_loss += loss.item() tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0: if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16: if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) torch.nn.utils.clip_grad_norm_(
amp.master_params(optimizer), args.max_grad_norm)
else: else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) torch.nn.utils.clip_grad_norm_(
model.parameters(), args.max_grad_norm)
optimizer.step() optimizer.step()
scheduler.step() # Update learning rate schedule scheduler.step() # Update learning rate schedule
model.zero_grad() model.zero_grad()
@ -362,15 +406,19 @@ def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedToke
): # Only evaluate when single GPU otherwise metrics may not average well ): # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer) results = evaluate(args, model, tokenizer)
for key, value in results.items(): for key, value in results.items():
tb_writer.add_scalar("eval_{}".format(key), value, global_step) tb_writer.add_scalar(
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) "eval_{}".format(key), value, global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) tb_writer.add_scalar(
"lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar(
"loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
logging_loss = tr_loss logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
checkpoint_prefix = "checkpoint" checkpoint_prefix = "checkpoint"
# Save model checkpoint # Save model checkpoint
output_dir = os.path.join(args.output_dir, "{}-{}".format(checkpoint_prefix, global_step)) output_dir = os.path.join(
args.output_dir, "{}-{}".format(checkpoint_prefix, global_step))
os.makedirs(output_dir, exist_ok=True) os.makedirs(output_dir, exist_ok=True)
model_to_save = ( model_to_save = (
model.module if hasattr(model, "module") else model model.module if hasattr(model, "module") else model
@ -378,14 +426,18 @@ def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedToke
model_to_save.save_pretrained(output_dir) model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin")) torch.save(args, os.path.join(
output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir) logger.info("Saving model checkpoint to %s", output_dir)
_rotate_checkpoints(args, checkpoint_prefix) _rotate_checkpoints(args, checkpoint_prefix)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(optimizer.state_dict(), os.path.join(
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) output_dir, "optimizer.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir) torch.save(scheduler.state_dict(), os.path.join(
output_dir, "scheduler.pt"))
logger.info(
"Saving optimizer and scheduler states to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps: if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close() epoch_iterator.close()
@ -401,11 +453,13 @@ def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedToke
# Evaluation of some model # Evaluation of some model
def evaluate(args, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, df_trn, df_val, prefix="") -> Dict: def evaluate(args, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, df_trn, df_val, prefix="") -> Dict:
# Loop to handle MNLI double evaluation (matched, mis-matched) # Loop to handle MNLI double evaluation (matched, mis-matched)
eval_output_dir = args.output_dir eval_output_dir = args.output_dir
eval_dataset = load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=True) eval_dataset = load_and_cache_examples(
args, tokenizer, df_trn, df_val, evaluate=True)
os.makedirs(eval_output_dir, exist_ok=True) os.makedirs(eval_output_dir, exist_ok=True)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly # Note that DistributedSampler samples randomly
@ -417,7 +471,7 @@ def evaluate(args, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, df_tr
eval_sampler = SequentialSampler(eval_dataset) eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader( eval_dataloader = DataLoader(
eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate, drop_last = True eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate, drop_last=True
) )
# multi-gpu evaluate # multi-gpu evaluate
@ -448,7 +502,8 @@ def evaluate(args, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, df_tr
result = {"perplexity": perplexity} result = {"perplexity": perplexity}
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") output_eval_file = os.path.join(
eval_output_dir, prefix, "eval_results.txt")
with open(output_eval_file, "w") as writer: with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(prefix)) logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()): for key in sorted(result.keys()):
@ -459,13 +514,15 @@ def evaluate(args, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, df_tr
# Main runner # Main runner
def main(df_trn, df_val): def main(df_trn, df_val):
args = Args() args = Args()
if args.should_continue: if args.should_continue:
sorted_checkpoints = _sorted_checkpoints(args) sorted_checkpoints = _sorted_checkpoints(args)
if len(sorted_checkpoints) == 0: if len(sorted_checkpoints) == 0:
raise ValueError("Used --should_continue but no checkpoint was found in --output_dir.") raise ValueError(
"Used --should_continue but no checkpoint was found in --output_dir.")
else: else:
args.model_name_or_path = sorted_checkpoints[-1] args.model_name_or_path = sorted_checkpoints[-1]
@ -505,8 +562,10 @@ def main(df_trn, df_val):
# Set seed # Set seed
set_seed(args) set_seed(args)
config = AutoConfig.from_pretrained(args.config_name, cache_dir=args.cache_dir) config = AutoConfig.from_pretrained(
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, cache_dir=args.cache_dir) args.config_name, cache_dir=args.cache_dir)
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name, cache_dir=args.cache_dir)
model = AutoModelForCausalLM.from_pretrained( model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path, args.model_name_or_path,
from_tf=False, from_tf=False,
@ -514,15 +573,17 @@ def main(df_trn, df_val):
cache_dir=args.cache_dir, cache_dir=args.cache_dir,
) )
model.to(args.device) model.to(args.device)
logger.info("Training/evaluation parameters %s", args) logger.info("Training/evaluation parameters %s", args)
# Training # Training
if args.do_train: if args.do_train:
train_dataset = load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False) train_dataset = load_and_cache_examples(
args, tokenizer, df_trn, df_val, evaluate=False)
global_step, tr_loss = train(args, train_dataset, model, tokenizer) global_step, tr_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) logger.info(" global_step = %s, average loss = %s",
global_step, tr_loss)
# Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained() # Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained()
if args.do_train: if args.do_train:
@ -546,26 +607,4 @@ def main(df_trn, df_val):
tokenizer = AutoTokenizer.from_pretrained(args.output_dir) tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
model.to(args.device) model.to(args.device)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
)
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
model = AutoModelForCausalLM.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, df_trn, df_val, prefix=prefix)
result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
results.update(result)
return results
main(trn_df, val_df) main(trn_df, val_df)